--> Interpreting Backwater Effects on Fluvial Style and Architecture Within a High-Gradient Compound Incised-Valley Deposit: Example From Cretaceous Ferron Notom Delta, South East Utah

AAPG Annual Convention and Exhibition

Datapages, Inc.Print this page

Interpreting Backwater Effects on Fluvial Style and Architecture Within a High-Gradient Compound Incised-Valley Deposit: Example From Cretaceous Ferron Notom Delta, South East Utah

Abstract

Non-marine sequence stratigraphic models for incised valleys predict systematic changes in fluvial style from lowstand through transgressive to highstand system tracts, assuming a constant rate of marine transgression. Downstream base-level influence on fluvial style however, can be highly variable, and may produce less predictable pattern. The main purpose of this paper is to evaluate the change in plan-view style of rivers from their upstream to downstream versus extent of the effects of backwater length recorded within a Cretaceous compound incised-valley fill in the Ferron Notom Delta, Henry Mountain region, southeast Utah. It was hypothesized that the backwater length, which is proportional to river flow depth and inversely correlated to river slope theoretically controls the effects of base-level change to propagate upstream. Previous studies on modern Mississippi river valley demonstrated that channel, channel-belts in a coastal-plain valley experience predictable morphological and sedimentological changes as they enter their backwater length, and characterized by rivers that are aggradational, avulsive and distributive in nature. This paper, for the first time, attempts to test these hypotheses in an ancient compound valley fill by detailed facies architectural analysis of channel and bar deposits from vertical measured sections and estimation of backwater limits from paleo-flow depth measurements in combination with measured changes in base level, tidal range and fluvial slope along an extensively exposed fluvial long profile. Three major erosional surfaces partitioned the compound valley fill into three sequences that have noticeable morphological and sedimentological differences from the upstream to downstream area. All three incised-valley fills in the downstream area shows a vertical translation from fluvial to tidal facies at the top of the valley. This suggests the rivers entered into their backwater length at the later phase of valley filling causing a systematic vertical decrease in overall grain size as well as an upward increase in preserved dune height and bar thickness. The valley fill deposits at the upstream area, which is roughly 15 km southwest, however, lie beyond the reach of the backwater effect and hence do not show any tidal influence, but consist of much coarser facies within channel bodies of relatively low width-thickness ratio.