--> Abstract: Lithologic Expressions of Glacial/Interglacial and Millennial-Scale Variability in the Pacific Sub-Arctic Record During the Pleistocene (Bering Sea, IODP Exp. 323), by Drake, M. and Aiello, I.; #90162 (2013)

Datapages, Inc.Print this page

Lithologic Expressions of Glacial/Interglacial and Millennial-Scale Variability in the Pacific Sub-Arctic Record During the Pleistocene (Bering Sea, IODP Exp. 323)

Drake, M. and Aiello, I.
[email protected]

Diatom-rich, Pleistocene sediments collected in the Bering Sea during IODP Exp. 323 in the Bering Slope (Sites U1339 and U1344) and at the Bowers Ridge (Site U1340) show prominent variability of physical properties (e.g. bulk density), lithology and in the preservation of diatom valves. Using the shipboard physical property data in combination with newly generated smear slide counts and laser particle size (LPS) analyses we were able to quantify the sedimentary components for statistical analysis. Our data confirm that bulk density is negatively correlated with mean grain size (~30%) and abundance of diatoms (~40%) while it positively correlates with clay size particles (~20%) and silt-size siliciclastic particles (~20%). However, clay size particles and silt-size siliciclastic show no significant correlation, suggesting independent sources. We also found that diatom valve integrity is correlated with the abundance of diatoms (~40%) suggesting that diatom preservation increases with increasing opal fluxes. Finally, we found a surprisingly low correlation (only ~30%) between abundance of clay minerals (from smear slide counts) and percent clay-sized particles (LPS); SEM analysis supports the interpretation that a significant portion of clay-sized particles could derive from the dissolution/fragmentation of diatom biosilica. In conclusion, more than 40% of lithologic variability in the Bering Sea sediments reflects changes in the abundance of diatoms and siliciclastic particles: glacial/stadial (interglacial/interstadial) conditions were characterized by lower (higher) primary productivity, higher (lower) terrigenous input, and diatom valve dissolution and formation of clay-size biosilica particles (higher diatom valve preservation). Our approach offers new insights on the links between changes in sedimentation and oceanography at different scales of climate variability in the Bering Sea and potentially in other similar high latitude basins.

 

AAPG Search and Discovery Article #90162©2013 Pacific Section AAPG, SPE and SEPM Joint Technical Conference, Monterey, California, April 19-25, 2013