SYMINGTON, W. A. - Exxon Production Research Co., and HIGGINS, J. W. - Elf Exploration Co.
Abstract: Hydrocarbon Systems Analysis in the Diana Basin, Gulf of Mexico
Hydrocarbon systems
analysis helps estimate hydrocarbon trap charge and, in some cases, phase
(gas/oil). The analysis depends on understanding the entire hydrocarbon
system, including source rock distribution, the volumes and timing of hydrocarbons
generated, the vertical and lateral migration
pathways from the source,
and the distribution of traps along those pathways. This presentation describes
the application of this technology to the Diana Intraslope Basin in the
western Gulf of Mexico.
The Diana Basin is located 160 miles south of Galveston, Texas, in over 4500 feet of water. The hydrocarbon system in the basin consists of Lower Tertiary to Tithonian source rocks actively charging Plio-Pleistocene reservoirs. The source rocks are poorly imaged seismically, and the estimation of source age is from geochemical interpretation of the reservoired hydrocarbons and seeps. Discoveries in the basin include the Diana oil and gas field, the Hoover oil field, and the South Diana gas field. Trap styles in the basin include stratigraphic/structural traps along the basin margin (Diana, South Diana) and drape-related anticlinal closures in the central portion of the basin (Rockefeller, Hoover).
Hydrocarbon systems analysis
was undertaken following the largely disappointing results of drilling
at the Rockefeller Prospect in 1995.The Rockefeller discovery, located
in the center of the basin, found a full gas saturation in only one of
several objective sands, and the gas was almost entirely biogenic, implying
that migration
pathways for thermogenic hydrocarbons into the prospect
were inadequate.A fault, which bisects the Rockefeller prospect with over
700 feet of throw at
depth
, had been thought to be the
migration
conduit
for thermogenic hydrocarbons from deeply buried source rocks.At the time
Rockefeller was drilled, Diana was the only other drilled structure in
the basin. Several additional prospects, including Hoover, were thought
to rely on the Rockefeller fault, and similar faults, being
migration
pathways.
It was therefore necessary to address the question of
migration
adequacy
on a sub-basin scale.
Potential vertical migration
conduits were interpreted from spec
2-D
and Exxon/BP 3-D seismic data.The
analysis identified likely vertical
migration
conduits along the salt-sediment
interface at the periphery of the basin. Faults associated with the basin-rimming
salt appear conducive to vertical
migration
due to their frequent reactivation
as the salt ascended. Lateral
migration
was analyzed for the three major
reservoir objectives in the basin. The stratigraphic relationship among
these horizons is summarized in fig. 1. The analysis utilized proprietary
migration
software, which identifies the drainage cell associated with
each trap on an objective horizon. Combining this with the interpretation
of likely vertical
migration
conduits, the possibility of vertical
migration
within each drainage cell, and the fill and spill relationships among the
traps on each objective horizon were determined.The objective horizons
were also back-stripped and de-compacted for paleo-drainage analysis.
Example maps showing present-day
drainage cells and spill pathways for the "A50" and "P1:10" reservoir horizons
are shown in fig. 2-3. These indicate that the Rockefeller drainage cell
has no access to salt-related faults, while the Hoover and South Diana
drainage cells can access these faults. Even in the absence of a detailed
model for the deep thermogenic source rocks, this configuration of migration
pathways explains the discovery at Diana, and the disappointing results
at Rockefeller. This configuration also permitted forecasting later successes
at.Hoover and South Diana.The resulting understanding of
migration
pathways
in the basin can be summarized as follows:
- Because of its isolated
drainage cell, the Rockefeller prospect relies solely on the Rockefeller
fault for thermogenic hydrocarbon migration
. Given that the fault does
not intersect deeper source rocks, this explains why Rockefeller contains
only biogenic gas.
- Hoover, South Diana, and
other prospects have viable migration
pathways for thermogenic hydrocarbons
which are independent of the Rockefeller fault.
- Hoover and South Diana are likely to be charged with thermogenic hydrocarbons from a common vertical ascension point along the South Diana fault.
This understanding of migration
pathways in the Diana Basin is supported by the eventual discoveries at
South Diana and Hoover. Hydrocarbon system analysis provided the critical
technical reason to pursue Hoover, and will be a key element of Exxon's
risk analysis for additional prospects in the basin.
AAPG Search and Discovery Article #90923@1999 International Conference and Exhibition, Birmingham, England