Click to view article in PDF format.
GCEqualizing
Wavelets
Produced by Different Seismic Sources*
Bob Hardage1
Search and Discovery Article #40894 (2012)
Posted March 26, 2012
*Adapted from the Geophysical Corner column, prepared by the authors, in AAPG Explorer, March, 2012, and entitled "When All Data Are Not Created Equally". Editor of Geophysical Corner is Satinder Chopra ([email protected]). Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director. AAPG©2012
1 Bureau of Economic Geology, The University of Texas at Austin ([email protected])
Tidewater areas can be difficult places to acquire consistent-quality seismic data, because different sources have to be used across exposed land surfaces than what are used across shallow-water areas. Typically, explosives are used in shot holes in the onshore portion of a tidewater prospect, whereas environmental regulations may require that an air-gun source be used in shallow-water areas.
These two seismic sources produce different basic
wavelets
– and profiles produced with explosives and air guns rarely tie in an optimal manner at common image coordinates without using wavelet-shaping algorithms to create equivalent reflection character across targeted intervals.
|
|
An example of using an explosive source and an air-gun source across a Louisiana tidewater area is documented as Figure 1 and Figure 2. This shallow-water test line was recorded twice because, at this location, explosive sources were allowed. For one profile, the source was a 30-pound (13.6-kilogram) charge positioned at a depth of 135 feet (41 meters) at each source station. For the second data acquisition along the same profile, the source was an array of four air guns with a combined volume of 920 in³, and eight air-gun pops were summed at each source station. Considerable processing effort was expended to make the final reflection character identical on each test line. The data illustrated as Figure 1 show the results of the data processing. The frequency content of the two profiles is approximately the same, but wavelet character is not identical at the junction point (station 165). In this instance, the interpreter responsible for this prospect decided that the reflection character expressed by the explosive source was preferred rather than the wavelet response shown by the air-gun source. The challenge was that in neighboring tideland areas, regulations required that an air-gun source be used in water-covered areas – shot-hole explosives could not be used in shallow water as they had been across this initial test site, and a method had to be developed that would allow air-gun-source data to be used in conjunction with explosive-source data acquired across adjacent exposed-land areas. Said another way, the problem was to create a basic wavelet in air-gun-generated data that was equivalent to the basic wavelet embedded in explosive-source data. This type of problem has to be solved by data-processing procedures, not by data-acquisition techniques. An approach used by many data processors to ensure that equivalent basic This technique was applied to the tidewater seismic data illustrated on Figure 1 by using data from the image trace at station 153 to calculate cross-equalization operators that converted the The example discussed here is from a tidewater area where operating and environmental constraints forced different sources to be used on land-based and water-based seismic lines. The concept of numerical equalization of the basic |
General statement

