Click to view article in PDF format.
GC3-D Design Philosophy – Part 4: The Even-Integer Rule*
Bob Hardage1
Search and Discovery Article #40664 (2010)
Posted December 17, 2010
*Adapted from the Geophysical Corner column, prepared by the author, in AAPG Explorer, December, 2010, and entitled “Last Call: The Even-Integer Rule”. Editor of Geophysical Corner is Bob A. Hardage ([email protected]). Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director. Click for remainder of series: Part 1 Part 2 Part 3
1Bureau of Economic Geology, The University of Texas at Austin ([email protected])
This article is the fourth of a four-article series. The final guideline that should be used when designing a 3-D survey is the use of the even-integer rule for specifying the exact dimensions of a recording swath. This design principle can be stated as:
A recording swath should span an even number of receiver lines and an even number of source-line spacings (Figure 1).
This rule defines how wide a 3-D recording swath should be in the inline and cross-line directions so stacking
fold is a constant, non-oscillating value across 3-D image space. This even-integer rule does not replace the previously described concept of using the depth of the primary imaging target to define the size of the recording swath; the rule merely adjusts swath dimensions by small amounts to ensure a uniform
stacking
fold is achieved. For example: If the depth and size of the primary imaging target cause a designer to define the in-line dimension of the recording swath to be 14,000 feet and the receiver station spacing to be 110 feet, the even-integer rule might make a designer adjust the inline dimension to 13,200 feet (120 receiver stations) or to 14,080 feet (128 receiver stations), depending on how many receiver stations occur between adjacent source lines. When applied in the cross-line direction, the even-integer rule says the recording swath should span an even number of receiver lines.
For example, a recording swath consisting of eight, 10 or 12 receiver lines is better than one consisting of nine, 11, or 13 lines. Note that the wording of the rule uses the phrase, “should span,” not the more restrictive condition, “must span.”
|
The reason for this even-integer guideline can be seen by referring to the equation for cross-line
FXL = (1/2) (Number of receiver lines in recording swath).
If the number of receiver lines used in that
An oscillating
For example: A recording swath should span six, eight or 10 source-line spacings (which would involve seven, nine or 11 source lines, respectively) rather than span five, seven or nine source-line spacings (which would require six, eight or 10 source lines, respectively).
If for any reason - such as permitting constraints or lack of local surface access – a recording swath cannot span an even number of source-line spacings, the even-integer rule can be amended so the design requirement is:
Receiver lines in the recording swath should start and stop exactly on source lines.
The rationale for this rule is that to avoid oscillations in
An example of the even-integer rule in 3-D design is illustrated as Figure 2 and Figure 3. The key geometrical parameters are:
● Source-line spacing = 1,320 feet. ● Receiver-line spacing = 880 feet. ● Source-station spacing = 220 feet. ● Receiver-station spacing = 110 feet.
Consequently, there are 12 receiver stations between adjacent source lines and four source stations between adjacent receiver lines. Two recording swaths, A and B, are shown overlaying the 3-D grid on Figure 2. Swath A honors the even-integer rule; swath B does not. In the cross-line direction, swath A spans 10 receiver lines, which obeys the even-integer requirement. Swath B violates the even-integer rule in the cross-line direction because it spans 11 receiver lines. In the in-line direction, swath A spans 96 receiver stations, but swath B spans 84 receiver stations. For source stations a at the center of swath A, there are 48 receiver stations (that is, four source-line spacings) north and south of the source position, causing swath A to span an even number (eight) of source-line spacings.
For source stations b at the center of swath B, there are 42 receiver stations. Swath B thus spans an odd number (seven) of source-line spacings and violates the even-integer rule in the inline direction. Swath B is further undesirable because it does not start and stop on receiver lines. Because of these geometrical constraints, swath A creates whole number values of four and five for
-� FIL = 3.5. ● FXL = 5.5. ● F = 19.25.
The 3-D
Copyright © AAPG. Serial rights given by author. For all other rights contact author directly. |