Click
to view article in PDF format.
GCHigh
Resolution P-P
Imaging
of Deepwater Near-Seafloor Geology*
AND
GCHigh
Resolution P-SV
Imaging
of Deepwater Near-Seafloor Geology**
By
Bob A. Hardage1 and Paul E. Murray1
Search and Discovery Article #40200 (2006)
Posted July 4, 2006 (Part 1), September 20 (Part 2)
*Adapted from the Geophysical Corner column, prepared by the
authors and entitled “Technique Improves Deep
Imaging
,” in AAPG Explorer, July,
2006, as Part 1 of a two-part series.
**Adapted from the Geophysical Corner column, prepared by the authors and entitled “P-SV Data Most Impressive Image,” in AAPG Explorer, August, 2006, as Part 2 of a two-part series.
Editor of Geophysical Corner is Bob A. Hardage. Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director.
1Bureau of Economic Geology, University of Texas, Austin, Texas ([email protected] )
P-P
Imaging
(Part 1)
Multicomponent seismic data have unique value for studying near-seafloor geology in deepwater environments. When properly processed, P-P (compressional) and P-SV (converted-shear) images made from 4-C seismic data acquired in deep water with seafloor sensors show near-seafloor geology with amazing detail.
This is
the first of two parts that describe how improved
imaging
of near-seafloor,
deepwater strata can be achieved with conventional multicomponent seismic data.
This part focuses on P-P
imaging
; Part 2 focuses on P-SV
imaging
.|
uIntroductionuFigures 1-2uAcquisition / processinguApplicationsuCommentuFigures 3-4uWave lengthuIncreasing frequencyuAppendix
uIntroductionuFigures 1-2uAcquisition / processinguApplicationsuCommentuFigures 3-4uWave lengthuIncreasing frequencyuAppendix
uIntroductionuFigures 1-2uAcquisition / processinguApplicationsuCommentuFigures 3-4uWave lengthuIncreasing frequencyuAppendix
uIntroductionuFigures 1-2uAcquisition / processinguApplicationsuCommentuFigures 3-4uWave lengthuIncreasing frequencyuAppendix
uIntroductionuFigures 1-2uAcquisition / processinguApplicationsuCommentuFigures 3-4uWave lengthuIncreasing frequencyuAppendix
uIntroductionuFigures 1-2uAcquisition / processinguApplicationsuCommentuFigures 3-4uWave lengthuIncreasing frequencyuAppendix |
In deepwater
multicomponent seismic data acquisition, there is a large elevation
difference between source stations (an air gun at the sea surface) and
receiver stations on the seafloor. Conventional processing of deepwater
4-C seismic data involves a wave-equation datuming step that transforms
the data to a domain in which sources and receivers are on the same
An example of a good-quality, deepwater P-P image of near-seafloor geology made with this wave-equation datuming approach is shown as Figure 1a. This image shows local geology associated with a fluid-gas expulsion chimney that extends to the seafloor. If a person wishes
to study near-seafloor strata, a new approach to P-P Users of VSP technology know VSP data provide high-resolution images of geology near downhole receiver stations. That same logic leads to the conclusion that deep-water multicomponent seismic data processed with VSP-style techniques should yield higher resolution images of geology near deep seafloor receivers. The P-P processing illustrated here can be done with either 2-C or 4-C seafloor sensors. The fundamental requirement is to acquire data with a sensor having a hydrophone and a vertical geophone. The seafloor hydrophone response (P) and the seafloor vertical-geophone response (Z) are combined to create downgoing (D) and upgoing (U) P-P wavefields as:
D=P+Z/cos(F) U=P--Z/cos(F)
“F” defines the incident angle at which the downgoing compressional wave arrives at the seafloor. Once this wavefield separation is done, deepwater multicomponent seismic data are defined in terms of downgoing and upgoing wavefields, just as are VSP data. Having access to downgoing (D) and upgoing (U) wavefields means sub-seafloor reflectivity can be determined by taking the ratio U/D. This reflectivity wavefield is then segregated into stacking corridors, and data inside these corridors are summed to create image traces just like VSP data have been processed for the past 20-plus years. Figure 1b shows a P-P image made with this technique using the same deep-water data displayed in Figure 1a. The improvement in resolution is obvious.
Applying this VSP-style
Every seismic data-processing technique, however, has constraints and pitfalls. Two principal constraints of the technology described here are:
P-SV
|
