Click
to article in PDF format.
GCImaging Deep Gas Targets Across Congested Marine Production Areas
By
Bob A. Hardage1, Randy Remington1, Michael Deangelo1, and Khaled Fouad1
Search and Discovery Article #40190 (2006)
Posted May 2, 2006
*Adapted
from
the Geophysical Corner
column, prepared by the authors and entitled, “Imaging Deep Gas in Crowded
Areas,” in AAPG Explorer, April, 2006. Editor of Geophysical Corner is Bob A.
Hardage. Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is
Communications Director.
1Bureau of Economic Geology, The University of Texas, Austin, Texas ([email protected] )
General Statement
Gas producers across the northern shelf of the Gulf of Mexico are now targeting super-deep gas plays--some targets at depths of 26,000 to 33,000 ft (eight to 10 km).
To
image a target properly at a depth D, seismic data should be acquired with
source-to-receiver offsets that extend to a distance equal to or exceeding
target depth D. Thus, to create optimal images of these super-deep gas targets,
seismic data need to be acquired with receiver offsets extending to eight to 10
km away
from
the source.
|
uGeneral statementuFigure captionsuProduction congestionuP-P & P-SV imagesuConclusionsuAcknowledgment
uGeneral statementuFigure captionsuProduction congestionuP-P & P-SV imagesuConclusionsuAcknowledgment
uGeneral statementuFigure captionsuProduction congestionuP-P & P-SV imagesuConclusionsuAcknowledgment
uGeneral statementuFigure captionsuProduction congestionuP-P & P-SV imagesuConclusionsuAcknowledgment |
Two new marine seismic technologies now allow maximum source-receiver offsets of nine or 10 km:
The distinction between stationary seafloor sensors and towed-cable sensors is important when considering the challenge of acquiring long-offset data for deep-target imaging across congested production areas. Both data-acquisition options are illustrated in Figure 1.
Example of Production Congestion An example of production congestion existing across some shallow-water areas of the Gulf of Mexico is shown in Figure 2. Here, a six-mile (10 km) diameter circle is positioned on the map to illustrate the difficulty of towing a six-mile cable across the area in any azimuth direction without snagging the cable on a platform, well head, or other surface-exposed facility. In contrast to the difficulty of executing towed-cable operations across this area, north-south OBC lines AA and BB and east-west OBC line CC (actual profiles used in one long-offset OBC data-acquisition program) pass within a few meters of several production platforms and other permanent facilities. Once OBC sensors
are deployed on the seafloor, a source boat towing only a short
Example of P-P and P-SV ImagesAn additional appeal of OBC/OBS technology is that 4-C seismic data can be acquired, allowing targeted reservoirs to be imaged with P-SV (converted shear) wavefields as well as with conventional P-P wavefields. Towed-cable technology acquires only P-P seismic data. An example of P-P
and P-SV images constructed Encircled structural features A and B are interpreted to be depth-equivalent geology. The time warping technique positions reflections A and B in time-warped P-SV image space to within 100 ms of their positions in P-P image space. A vertical salt structure blanks out the P-P and the P-SV images approximately midway between CDP coordinates 19,600 and 21,000. Using local seismic-measured rms velocities for depth conversion, the base of the data window in this display extends to approximately 7.5 km (~25,000 ft), the realm of super-deep gas targets. Features 1 through 4 on the P-SV image indicate a cyclic depositional process, which is important geologic information that is not obvious in the P-P image. Feature 5 is an example of P-SV data showing strata that are not obvious in the P-P image. Feature 6 is an example of P-P data imaging high-dip strata better than P-SV data at this location. In our experience, we have found the opposite also to be true in some instances; that is, in some settings P-SV data image high-dip structure better than P-P data.
Two important
conclusions can be made
In addition to the data shown in Figure 3, our investigations have documented numerous other examples where P-SV images are equal in quality and resolution to P-P images at depths of 20,000 to 26,000 ft across the Gulf of Mexico.
The U.S. Department of |
