Click to view abstract in PDF format.
The
Yampi Shelf, Browse Basin, North-West Shelf, Australia: A test-bed for
constraining hydrocarbon migration and
seepage
rates using a combination of 3D
seismic data and multiple, independent remote sensing technologies
By
G. W. O’BRIEN, A. BARRETT, M. LECH, R. SUMMONS, and K. GLENN
Australian Geological Survey Organisation, Canberra, ACT 2601, AUSTRALIA
The Yampi Shelf, northwest Australia, is located on the northern inboard edge of the Browse Basin (at a margin-scale relay system which separates the Bonaparte and Browse Basins). It comprises part of a Palaeozoic to Mesozoic flexural ramp margin which dips north-west, away from the flanking cratonic Proterozoic Kimberley Block. The Kimberley basement has a rugose topography, with some horst blocks elevated 500 m above the surrounding basement. Cretaceous seal-reservoir couplets are developed around, and over, this basement ramp topography, providing a range of play types which have been explored over the last few years. Progressive onlap of Cretaceous post-rift seals onto the basement ramp has resulted in the regional seal becoming both thinner and sandier marginward. In some of these more margin-ward locations, some prominent basement highs are ‘bald’ of seal, whereas in others, the seal thins dramatically onto the back of topographically prominent, landward-dipping tilt blocks. The region is presently receiving a very active hydrocarbon charge, which consists of both oil (Cretaceous-sourced) and gas (pre-Jurassic-sourced).
A detailed research program
on the Yampi Shelf over the last few years has investigated the hydrocarbon
migration, leakage and
seepage
characteristics of this region using a
combination of:
- 3D (and regional 2D) seismic data;
- oil seep remote sensing data, including five-fold coverage Synthetic Aperture Radar (SAR) coverage, two high-resolution (1,000-2,500 m line spacing) water column geochemical sniffer surveys, two Airborne Laser Fluorosensor (ALF) aircraft surveys, and an aircraft-mounted hyperspectral survey;
- two geological sampling programs, which used combinations of cores, grabs, videos and sidescan sonar.
Natural hydrocarbon
seepage
was confirmed independently by all of the remote sensing technologies, though
the relative response and sensitivity of each technology to
seepage
of varying
rates and compositions was quite different. The first-order control on the
distribution, and perhaps the composition, of the detected
seepage
was the
thickness and capacity of the regional Cretaceous sealing units. Overall, the
seeps could be broken down into a number of simple categories.
Gas chimneys (low flux)
Small, localised (<4-5 km
across) dry gas seeps were found to be principally related to seismically
prominent gas chimneys which were associated with topographically prominent tilt
blocks. These chimneys, whilst both sharp and spectacular on seismic data,
typically only resulted in relatively small amounts of
seepage
, typically 2-4
times background (as measured by sniffer). This
seepage
related to the thinning
of the regional seal, with attendant loss of seal capacity, across the tops of
the tilt blocks, and low-flux
seepage
through relatively restricted zones. These
gas chimneys often produced significant amplitude anomalies in the shallow (<500
msecs) section, though they typically had little apparent affect of the
seafloor, either in relation to bathymetry or amplitude effects.
Areally extensive gas seeps (high-flux)
All of the major gas
seepage
,
which in some areas reached >300 ppm in the bottom waters (>100 times background
from the sniffer data), was closely associated with a broad region containing
prominent and large basements horsts which were partially to completely bald of
Cretaceous seal. The principal detected seeping hydrocarbon was dry (<1% wet),
thermogenic gas (d13C
= -42.45). These intense zones of
seepage
were measured repeatedly through time
(over several years) tended to be very large (10 to as much as 30 km across),
though their seismic expression was muted, and was often restricted to diffuse
zones of relatively poor coherency, or the presence of very prominent amplitude
anomalies at the seafloor. Comparison between methane concentration in the water
column and the extracted seafloor seismic amplitude through the region of these
dry gas seeps revealed an almost one-to-one relationship, apparently because of
enhanced, seep-related carbonate cementation at, or near, the seafloor. Sediment
samples through this area of gas
seepage
show molecular evidence for the
presence of both aerobic and anaerobic methane oxidising microbial communities.
Aerobic processes are signified by the presence of diagnostic hopanoids, while
newly anaerobic methane oxidising consortia are revealed through their gylcerol
ether signature lipids. Isotopically light carbonate cements were also detected
within the sediments through this zone. No macro-seep communities were detected
through these areas, though a series of prominent pockmarks were present. The
locations of both the pockmarks and the massive gas
seepage
could be directly
linked via the 3D seismic data to areas of thin, poor quality seal.
Areally extensive oil seeps (intermittent, high-flux)
The most prominent oil seeps
on the Yampi Shelf (detected principally by SAR) were located ~10-15 km inboard
of the intense gas-seeps. This oil
seepage
was focused along a zone
corresponding approximately to the regional zero-edge-of-seal. Prolific
seepage
was observed on only two of the five SAR scenes interpreted, suggesting that
this oil
seepage
was very intermittent, perhaps related to a progressive
build-up and then release of hydrocarbons at the seal’s edge. These seeps appear
to be due to the leakage of relatively heavy, biodegraded oil, of a type similar
to that found within the reservoir in the nearby Cornea oil discovery. Prominent
macro-communities (detected on side-scan sonar data) appear to be developed all
along this zone of oil
seepage
, which tends to be characterised by relatively
low seismic amplitudes.
The offset between the location of seeping dry gas and heavy oil on the Yampi Shelf appears to be reflecting the differences in the relative mobility of gas and oil, controlled by differential seal capillary failure. The heavy, Valanginian-sourced biodegraded oil has migrated much further inboard, and only leaks to the seafloor once the seal is virtually gone. In contrast, the Palaeozoic/Early Mesozoic-sourced gas ‘breaks through’ the seal sooner because of its much higher relative mobility. As a consequence, dry gas seeps are developed in more basin-ward locations. Hence, on the Yampi Shelf, the progressive seal capillary failure towards the basin margin appears to have produced a large-scale, spatial compartmentalisation of the seeping hydrocarbons, in relation to both composition, and flux.
Overall, it
appears that hydrocarbon
seepage
on the Yampi Shelf is controlled by a
combination of low rates and volumes of secondary migration from basinal source
rocks and high rates and volumes of tertiary migration of oil and gas displaced
from accumulations (such as the Cornea trend) along the margin.