Click to view abstract in PDF format.
Surface and Near-Subsurface Hydrocarbon Migration Patterns, Mechanisms and Seepage Rates Associated with a Macroseep
By
V.T. Jones, III, Exploration Technologies, Inc., D.F. Becker, Geoscientific Consulting Partners, D.D. Coleman, Isotech Laboratories, Inc., T.H. Anderson, University of Pittsburgh, P.A. Witherspoon, University of California, and G.A. Robbins, University of Connecticut
Previous assessments within a planned development area revealed
methane
macroseeps emanating from a natural wetland containing marsh deposits, Gas
bubbles rising from an adjacent creek that crosses the property initially
indicated the presence of
methane
gas emissions, Gas measurements made in five
deep wells at multiple depths. extending down to the 50 feet adjacent to the
creek confirmed the presence of gas in deeper sediments underlying the site. The
methane
was initially interpreted as biogenic, and non-hazardous although a
natural gas storage reservoir lies within 3000 feet of the area where the
methane
seeps occur. An invcstigation was bcgun to address concern about
possible leakage from the gas storage reservoir.
A soil gas survey, consisting of over 800 sites placed on a 100 foot grid
spacing was completed over the site, defining an area of anomalous seepage.
Within the area of seeps,
methane
concentration in some samples is as high as
100%. At each site gas was cxtractcd from a four-foot deep soil gas probe
and analyzed for
methane
through butanes, carbon dioxide, and hydrogen sulfide.
Selected soil gas samples were also analyzed for carbon and hydrogen isotopes.
The distribution of the
methane
seeps was used to locate areas where deeper
monitor wells might be installed in order to assess input from deeper sources.
It was anticipated that mapping the presence of gas anomalies within an
extensive gravel aquifer that completely underlies the site at a depth of
approximately 50 feet could: 1) define gas sources located at intermediate depth
below the marsh deposits and 2) provide a three dimensional picture of the
natural gas seepage in the area.
Using the soil gas maps as a guide, 42 monitor wells were installed in the
gravel aquifer. Both free and dissolved gases were collected from each of these
wells using water displacement, with at least one sample collected from each of
the five to seven well-volumes of water pumped from each of the wells. The well
gases were analyzed for their
methane
through butane and carbon dioxide
contents. The hydrocarbon data from the monitor wells collected and analyzed by
this method provide reliable control points from which distribution of the light
hydrocarbons within the aquifer may be estimated. Areas containing
methane
concentrations in the aquifer ranged from zero to 100%, with the quantity of
free gases increasing significantly within the areas containing the higher
methane
levels. Carbon isotopes for
methane
, ethane, and carbon dioxide and
hydrogen isotopes for
methane
were analyzed for all monitor wells, although only
one sample from each well was analyzed. An excellent correlation between both
composition and isotopic ratios was found between the soil gas seeps at
four feet and the dissolved and free gases in the gravel aquifer at 50 feet. Gas
collected from seeps and wells is derived from thermogenic sources.
Gases from nine deep wells within lhc storage field were collcctcd and analyzed for their chemical and isotopic compositions for comparison with the near-surface and deeper ground water aquifer gases. Comparison of the chemical and isotopic data indicates that the surface gas seeps and 50-foot gravel aquifer gases are not related to the gases injected into the adjacent gas storage field. The shallow gas is nearly identical to production gases from a field about 4.5 miles to the southeast. This field has produced over 23 BCF of dry gas from the Pico Forrnation_ A non-productive well drilled adjacent to the secpagc anomaly blcw out in 1930 while drilling at 1830 feet in the Pico Formation and flowed at the rate of 5 MMcfpd for a few hours. A 3-D seismic study indicates the presence of disrupted strata, possibly associated with a fractured slump0 block that appears to provide the vertical pathways for the observed macroseeps.
Using the soil gas contour maps as a guide, numerous additional macroseeps were located on land, where gas seeps are typically difficult to find. Measured seepage rates range upwards from about 1 ml/minute to as much as 9 liters/minute of gas into the atmosphere. This variation in seepage rates, coupled with the extensive data base from the aquifer below the oxidation zone, provides a unique opportunity to study, and document near-surface alteration effects on soil gases.
The seepage gases contain mainly
methane
and are very dry. However, ethane
through butanes are sufficiently abundant for chemical trace analysis, and there
is adequate ethane for carbon isotopes analysis on selected samples Although,
the ethane is quite degraded within the 50 foot deep gravel aquifer, it exhibits
only a small variation in the ethane carbon isotope within the aquifer, ranging
from -18 to -2l parts per mil. Very near the surface. ethane carbon isotope
values as low as -13.5 per mil have been documented at four feet, suggesting
additional near-surface degradation related to the shallow depth. This type of
degradation effect has also been documented for
methane
, where the
methane
carbon isotopes have been altered to values that appear to be more mature than
they are in the underlying aquifer. These oxidation-related changes could easily
be misinterpreted as being more mature than they really are without the
additional supporting data.
In areas having very high advective seepage rates, both the
methane
and the
ethane have chemical and isotopic values that are identical to those measured in
the gravel aquifer. However, in areas having moderate seepage rates, where
oxygen probably diffuses into the shallow subsurface, both
methane
and ethane
isotopes have been documented to have carbon isotopes values that do not
represent their true source, and/or maturity that is normally associated with
isotope interpretations, Thus the carbon isotope data may be easily
misinterpreted. In such samples, only the chemical composition; i.e., presence
of ethane, propane, and butanes proves the presence of a thermogenic source.
Hydrogen sulfide does not occur in the gases vented directly from the gravel
aquifer. It is, however, often present in the larger soil gas anomalies. The
source for hydrogen sulfide appears to be natural, organic rich soils, and its
areal distribution at the surface correlates almost entirely with rich seeps of
methane
gas, which apparently act as a carrier.
Figure Captions
Figure 1. Soil vapor data collected on a 110 foot grid spacing from a depth
of four feet below surface illustrates the size and shape of two very large
magnitude
methane
seep.
Methane
magnitudes range from ambient air levels upwards
of 89 percent. Actual gas bubbles have been visibly documented when the areas
containing the larger magnitude concentrations are flooded.
Figure 2. Using the soil gas data as a guide, forty-one monitor wells were
installed in the underlying gravel aquifer located approximately 50 feet
subsurface.
Methane
concentrations in the free gases liberated by water
displacement exhibit good correlation with the soil gas data shown in Figure 1.
Free gas concentrations in the aquifer range upwards of 98 percent by volume.
Figure 3. Stable carbon and hydrogen isotope analysis on the
methane
from the
forty-one monitor well samples show a range of compositions that suggest a
mixing of thermogenic with biogenic gases.
Figure 4. A map view of the isotopic data shown in Figure 3 defines the two
main
methane
anomalies, and suggests that the isotope values in the forty-one
monitor wells are controlled by proximity to source. The two most thermally
mature, and uniform isotope anomalies within the gravel aquifer at depth provide
confirmation of the two major soil gas anomalies. Surface macroseeps, found by
the soil gas survey have been collected and analyzed that match exactly to the
compositions of the gases found in the aquifer.