Seismic Based Fluid and Lithology Discrimination in Turbidite Systems: Case Studies from West Africa, Angola
By
Greg J. Schurter1, Steve R. Smith1
(1) BP, Sunbury, United Kingdom
Discoveries in the deep-water blocks of offshore Angola are dominated by Miocene and Oligocene mid-slope turbidite reservoirs. The seismic data are ideal for identifying AVO anomalies and fluid contacts as the rock and fluid properties combine to produce some of the highest quality seismic data in the world. As the cost of deepwater appraisal wells is huge, there is an increasing dependence on seismic data to predict critical reservoir parameters such as net-to-gross and hydrocarbon presence, often far from well control. In response, BP now routinely generates fluid and lithology specific seismic attribute volumes in Angola in order to capture information historically generated through appraisal well drilling.
Seismic reservoir characterization in deep-water environments has been aided
recently by
extended
elastic
impedance
theory, which can be used to determine
seismic projections that enhance or diminish fluid and lithology responses.
Seismic projection angles are determined by analyzing fluid and lithology
relationships on seismic or log cross-plots, and those angles are used to
generate seismic attribute volumes. In offshore Angola, the resulting lithology
and fluid attribute volumes have consistently yielded additional information
about the reservoir, often information not readily available from conventional
stacks. Deriving the best projection angles is not yet an exact science and
angles derived from seismic and logs are not always the same. This paper will
present, through a series of case studies, a methodology for deriving projection
angles from log and seismic data, and some of the striking seismic image
enhancements that can be achieved through utilizing those projections.