[First Hit]

Datapages, Inc.Print this page

Petrography and Petrophysical Characterization of the Precambriam Hydrocarbon-Bearing Reservoirs, Gulf of Suez, Egypt

By

Amr H. Elewa1, Mohamed A. EL-Sharkawy2, Mohamed Darwish2

(1) PETROBEL, Cairo, Egypt (2) Cairo University, Cairo, Egypt

 The present work deals with the geology and petrophysical characteristics of the Precambrian basement rocks and their hydrocarbon potentialities in the southern subprovince, Gulf of Suez. The available data are wireline logs, ditch cuttings and selected Previous HitcoreNext Hit samples of 13 wells; ten of which represent two oil fields: Ashrafi and Zeit Bay.

The petrography revealed coarse to medium crystalline granites with some exceptions in Abu Nigar-C-1 well where granodiorites are recorded. In Umm Agawish-1 well some diabase occurs across the granitic suits. Microfractures are found in two types: oriented sets along crystal contacts and cleavage planes and random sets crossing the crystals and framework. Secondary minerals filling these fractures are: carbonates, sulphides. iron oxides and sulphates. Some of these rock suites were differentially affected by Previous HitalterationNext Hit being manifested along cleavage planes and/or fractures. Three Previous HitalterationNext Hit stages could be deduced: the first during the Precambrian uplift and erosion phase; the second during the pre-Carboniferous uplift and erosion phase and the third was Pre-Miocene.

The integration between petrophysical and petrographical interpretation revealed the following main results: 1.The leaching of the Previous HitalterationNext Hit products of the feldspars in the granitic rocks led to the decrease of Gamma Ray and an increase of effective porosity. These also enhanced the calculated rock permeability. 2. Previous HitAlterationNext Hit along crystal margins is more effective for the reservoir performance. 3. The granitic suites being subjected to partial Previous HitalterationTop under the effect of acidic water have a lower reservoir quality than those being affected by alkaline water.