Carbon Dioxide Gas Loss and its Effect on Calcite Precipitation within Oil Wells: Relevance to Fault Cements

Thomas Carpenter and James Boles
Department of Geological Sciences, University of
California, Santa Barbara, CA
thomas carpenter@umail.ucsb.edu

Carbon dioxide degassing may be a driving force for calcite precipitation in faults and well bores. Tubing scales are ideal for investigation of CO₂ degassing because pressure changes, temperature changes, and fluid composition are known, which limits the possible mechanisms of isotopic variation. Calcite scales from a suite of oil and hydrothermal wells were analyzed for carbon and oxygen isotopic composition, and these data were compared with the predicted isotopic effects from CO₂ degassing.

Rapid calcite precipitation can preserve a distinctive isotopic signature of CO₂ degassing. Degassing of CO₂ preferentially removes ¹²C and ¹⁶O from the solution, leaving solution enriched in ¹³C and ¹⁸O. If crystallization of calcite is sufficiently rapid, HCO₃-enriched in ¹⁸Owill be incorporated into calcite crystal before ¹⁸O re-equilibration occurs between HCO₃-and the bulk water. The slope of ¹³C/¹⁸O in a CO₂ degassing system is predicted to be between 0.59 and 8.33 (Hendy, 1971). In an equilibrium-fractionated system, degassing will result in varying ¹³C values and ¹⁸O values dependent on the solution temperature and composition. Carbon species are less abundant in the system; thus, isotopic re-equilibration with dissolved carbon species is negligible.

The slope of $^{13}\text{C}/^{18}\text{O}$ from Kern River field calcite scales closely matches the predicted slope of 0.59 for rapid CO₂ degassing and calcite precipitation. Additionally, the carbon values present in the scale from Kern River are extremely enriched in ^{13}C ($^{13}\text{C}\approx+28$ per mil $_{\text{PDB}}$) consistent with CO₂ degassing. Most scales from North Coles Levee have positive $^{13}\text{C}/^{18}\text{O}$ slopes within the predicted range, suggesting that some kinetic fractionation effects are preserved in the scales. We conclude that effects of CO₂ degassing may be recorded by co-varying ^{13}C and ^{18}O in wells, and such effects could occur within fault zones, although preliminary data suggest the effects of CO₂ degassing are not preserved.