-
3-D
Seismic
Examples from Central Lake Maracaibo, Maraven's Block I Field, Venezuela -
Martin H. Link, Christopher K. Taylor, Nicolas G. Munoz J., Emilio Bueno, and Pedro J. Munoz,
-
Search and Discovery Article #20002 (1999)
CHAPTER 7 Martin H. Link1 , Christopher K. Taylor2, Nicolás G. Muñoz J.3, Emilio Bueno, and Pedro J. Muñoz (Maraven,S. A., Caracas, Venezuela.)
1Landmark
Graphics, Caracas, Venezuela. Current address: P.O. Box 62,
Tidewater OR 97390.
2Geco Parkla, Caracas, Venezuela.
3S. A. Consultores CSC, Venezuela
(Adapted for online presentation from article of same title by the authors given above published in P. Weimer and T. L. Davis, eds., AAPG Studies in Geology No. 42 and SEG Geophysical Developments Series No. 5, AAPG/SEG, Tulsa, p. 69-82.)
ABSTRACT
The structural and stratigraphic framework of Maraven's Block
I was re-interpreted using
3-D
seismic
and existing data as part
of an evaluation of the remaining oil potential. More than 1800
MMBO have been produced from Block I in the past 40 years, mainly
from structural traps. In order to maintain production levels, it
has become increasingly important to define the
seismic
stratigraphic framework for the area and to accurately locate
faults and stratigraphic pinchouts.
The dominant structures are the Icotea fault, its conjugate fault system, and the Eastern Boundary fault. The most prominent fault is the NE-striking Icotea fault, which subdivides the area into two main structural blocks, a graben in the West Flank and a horst in the East Flank. The Icotea fault is a highly complex fault zone with a long history of deformation. It is a nearly continuous fault zone with both vertical and lateral offsets and is locally inverted. Along the eastern flank of the Icotea, prominent reverse-fault bounded upthrown blocks, called the Attic, have developed. Along the western flank, contraction has re-activated listric faults into reverse and thrust faults. Major northwest-striking normal faults delineate a large paleoarch that occurs in the south-center of the East Flank. This phase of faulting produced small horst and graben blocks bounded by normal faults that dip to the northeast and southwest. The Eastern Boundary fault is subparallel to the Icotea fault and is an east-dipping normal fault that has been locally inverted and occurs in a synclinal area of the block. Two play concepts, utilizing (1) horizontal wells in Attic and (2) vertical wells along the Eastern Boundary fault, were successfully tested during this study.
The stratigraphic section includes, from oldest to youngest,
pre-Triassic basement rocks; the Jurassic graben-fill Quinta
Formation; the Cretaceous Rio Negro, Cogollo Group, La Luna,
Colon, and Mito Juan formations; the Paleocene Guasare Formation;
the Eocene Misoa Formation; the Miocene La Rosa, Lagunillas, and
La Puerta formations; and the Quaternary El Milagro Formation.
Only the lower part of the Eocene Misoa Formation (C sands) is
preserved in Block I, and most of the Eocene B sands and all of
the Pauji were either eroded or not deposited in this area. The
main reservoirs occur in the Eocene Misoa Formation and the basal
Miocene Santa Barbara member of the Lagunillas Formation.
Sedimentation occurred throughout the Eocene and was strongly
influenced by tectonism. The Eocene section in the horst block is
up to 760 m thick and is bracketed by two major unconformities.
The upper angular unconformity places the basal Miocene Santa
Barbara member (16-25 Ma) over the Eocene Misoa C sands (45-54
Ma). The lower disconformity (54 Ma) occurs at the top of the
Paleocene Guasare Formation. In between, eight
seismic
sequences
occur within the Eocene horst section. The adjacent stratigraphic
sections east and west of the horst block are thicker than the
East Flank section. The C sands in Block I form a
retrogradational clastic sequence deposited as transgressive
(70-80%), highstand (10-15%), and lowstand wedge and incised
valley fill (10-15%) systems tracts with prominent
marine-flooding surfaces separating these systems tracts. The
main reservoirs are thick-bedded transgressive sandstone
deposits.
The use of
3-D
seismic
data to interpret old producing fields
has become very important in field development. When integrated
with well, core, and production data,
3-D
seismic
data provide
the best tool to determine the stratigraphic and structural
framework for an area. Maraven, S.A., one of Venezuela's three
national oil companies, has been using
3-D
seismic
data to locate
new wells by accurately defining faults and stratigraphic
terminations/pinchouts and by developing new geologic models to
better develop their existing fields. In addition, the mapping of
seismic
horizons and amplitudes combined with time and horizon
slices have been used to determine reservoir trends in fields.
The Maracaibo Basin is an intermontaine basin today, lying
between the Perija and Merida Andes in the northwest corner of
Venezuela. Maraven's Block I is 1022 km and is in the
north-central part of Lake Maracaibo along the Icotea fault (FIGURE 1). This field has more than 550
wells, which have produced more than 1800 MMBO during the past 40
years, mainly from structural traps. The Block I area is the
southern continuation of the Lagunillas field and the northern
part of the Lama field (Delgado, 1992). The purposes of these
examples are to show the use of
3-D
seismic
data to (1) define
the structure and stratigraphy of this Block by integrating older
log, core, and production data, (2) to develop a
seismic
and
sequence stratigraphic model for the Lower Eocene Misoa C sands
in the East Flank, and (3) highlight two successful wells that
were drilled using
3-D
seismic
technology. The
3-D
seismic
data
allow, for the first time, the complex fault relationships of the
Icotea and Eastern Boundary faults to be resolved and major
sequence boundaries and systems tracts to be recognized. The
3-D
seismic
data were utilized to illustrate some of the various
methodologies used to better visualize the reservoir at both a
regional and a prospect scale.
METHODOLOGY
The structure and stratigraphy of Maraven's Block I were
re-interpreted using
3-D
seismic
data integrated with well logs,
cores, older 2-D
seismic
lines, and synthetic seismograms. Both
Landmark and Charisma software with Sun workstations were used to
construct maps, cross sections, and various
3-D
graphic
presentations. The Block I
3-D
seismic
survey was collected and
processed during 1990-1991 and covers an area approximately 20.4
km long by 11.6 km wide (FIGURE 2). The
shot lines were recorded perpendicular to the Icotea fault to
ensure optimum imaging of the subsurface. Between 250 and 300
time-based logs were combined with the
seismic
data to correlate
horizons. Eight velocity surveys and four synthetic seismograms
were used to calibrate and adjust the data. Regional 2-D
seismic
lines were used to identify the dip and shape of the main fault
traces, especially where the quality of the
3-D
seismic
data was
diminished due to the edge effect of the survey. In addition, ten
cored wells, containing more than 300 m of core, helped correlate
lithofacies to well logs and calibrate different
seismic
facies.
Time horizons, structures, stratigraphic tops, sequence
boundaries, and marine-flooding surfaces were mapped from
seismic
data in the area. Structures were defined using horizon and dip
maps and fault polygons interpreted from
seismic
lines (FIGURE 2 and
FIGURE 3).
The stratigraphic framework was established by (1) correlating
horizons from existing well tops using over 300 wells and by (2)
extrapolating tops into areas with little well control. The
sequence stratigraphy terminology follows Mitchum (1977), Vail
(1987), Posamentier and Vail (1988), and Van Wagoner et al.
(1990). Sequences, sequence boundaries, marine-flooding surfaces,
systems tracts, and parasequences were interpreted and correlated
for the Eocene section in the Block I horst.
Seismic
and
wireline-log cross sections were used together to carefully
identify sequence boundaries, marine-flooding surfaces, and
faults.
STRUCTURE
Block I area has a long and complex structural history (Link et al., 1994). The area is on the eastern margin of a Jurassic rift basin that trends north-south (Bartok et al., 1981; Bartok, 1993; FIGURE 1A). This graben, containing redbeds of Jurassic La Quinta Formation, has been deformed and later eroded (FIGURE 1B and FIGURE 4). The dominant structures of Block I are the Icotea fault, its conjugate fault system, and the Eastern Boundary fault (FIGURES 1, 2 , 3 , 5 , 6 , 7 , 8 , 9, 11). These faults follow the older Jurassic basin trends. The most prominent fault is the northeast-striking Icotea fault, which subdivides the area into two main structural blocks, a graben in the West Flank and a horst in the East Flank (FIGURE 2 and FIGURE 5). The Icotea fault is a highly complex fault zone with a long history of deformation. Along the eastern flank of the Icotea, prominent reverse-fault bounded blocks, called the Attic, have developed. On the West Flank, contraction has re-activated normal faults into reverse and thrust faults. The Eastern Boundary fault has a trend similar to that of the Icotea and merges with it, farther to the north, outside Block I (FIGURE 2). This listric fault is downthrown to the east and was later re-activated as a reverse fault (Figures FIGURE 5 and FIGURE 6). Northwest-striking normal faults delineate a large paleoarch that occurs in the south-center of the East Flank (Figures FIGURE 2 and FIGURE 3). This arch contains smaller horst and graben blocks bounded by normal faults that dip to the northeast and southwest.
The Icotea fault system strikes northeast across the west-central part of Block I (FIGURE 2). This fault zone contains the main trace of the Icotea and is flanked by several normal and reverse faults that dip to both the east and the west (FIGURE 2, FIGURE 3, FIGURE 5, and FIGURE 6). The Icotea fault is a relatively linear, continuous narrow zone, about 0.5-1 km wide and more than 100 km long. Along the strike, this narrow fault zone has both anticlinal and synclinal structures (FIGURE 7, FIGURE 8, and FIGURE 11). Vertical displacement along the Icotea fault in the West Flank basin is about 1-2 km, and movement is down to the west (FIGURE 7, FIGURE 8 and FIGURE 11). The amount of transpressional slip on the Icotea fault system could not be determined in Block I. The estimated left slip of 0.8 km is based on offset surface topography and subsurface mapping (Lugo, 1992). Miocene compression created inversion locally along the Icotea and related faults with about 15 of clockwise rotation for the Icotea fault-bounded blocks (Lugo, 1992). The Icotea fault is the boundary between the horst and graben (FIGURE 2, FIGURE 3, and FIGURE 5).
The Icotea fault had been interpreted as a normal fault,
strike-slip (Lugo, 1992, among others), thrust fault (Delgado,
1992), and inversion structure (Roberto et al., 1993). We believe
that four separate faults occur in close proximity along the
Icotea and each can be distinguished on
seismic
profiles. Each
fault system is superimposed upon another: (1) early Eocene
high-angle reverse fault(s), followed by (2) early Eocene normal
faults, (3) a middle to late Eocene listric fault system with a
detachment surface at the Cretaceous Colon level, and (4) late
Eocene and early Miocene inversion-related reverse and thrust
faults with a strike-slip component (i.e., Attic fault) (see FIGURE 4,
FIGURE 5, FIGURE 6, and corresponding structural
events [1]-[4] in FIGURE 5). We believe
the Icotea fault originally formed as an east-dipping reverse
fault (Icotea 1) (FIGURE 5). A
west-dipping boundary fault (Icotea 2) developed later over the
eastern edge of the Jurassic half-graben, directly overlying and
overprinting the earlier reverse or ramp fault. A thick Eocene
stratigraphic section was deposited on the downthrown side of the
fault, forming the West Flank Basin (FIGURE 5, FIGURE 6, FIGURE 7,
FIGURE 8). West-dipping listric normal
faults (Icotea 3) formed during and after sedimentation,
utilizing the older fault traces. Both antithetic and synthetic
faults were associated with the listric faults, which sole out in
the underlying Cretaceous Mito Juan/Colon and Paleocene shales (FIGURE 5,
FIGURE 6
and FIGURE 8). Later during the early
Eocene, transpression was caused by the oblique collision between
the Caribbean and the South American plates. The Icotea and its
listric fault system were re-activated as reverse and thrust
faults (Icotea 4) with some strike-slip component caused by the
clockwise rotation of the blocks (Bueno et al., 1993; Roberto et
al., 1993). During inversion, west-directed backthrusts occurred
during the late Eocene and again in the Miocene. Experimental
work and field observation of inversion structures show that
thrust and reverse faults commonly form and use existing
extensional structures (Williams et al., 1989; McClay and
Buchanan, 1991), especially where the original structures had a
low-angle dip.
The Attic fault is the easternmost reverse fault of the Icotea
system and, where present, always contains the East Flank section
(FIGURE 2, FIGURE 3,
FIGURE 5, FIGURE 6, FIGURE 7,
FIGURE 8, FIGURE 9 and FIGURE
11). It consists of two segments: (1) a northern part, and
(2) a southern part, separated by a saddle in the middle, where
the Attic fault merges with the main trace of the Icotea fault (FIGURE 2,
FIGURE 5, FIGURE 6, FIGURE 7,
and FIGURE 9). The Attic fault verges to
the east, and its vertical displacement is 50-100 m. The origin
of these fault blocks is probably related to late-stage
shortening, where the western corner of the horst block was
thrust- or reverse-faulted over itself (FIGURE
5). The Attic fault may have originated as a west-directed
synthetic fault of a listric fault system. During inversion, this
fault was re-activated and thrust eastward. Northwest- and
northeast-striking cross faults cut the Attic block into a series
of smaller fault blocks. These faults are young and cut the Attic
and Icotea faults as well as the Eocene unconformity. The use of
3-D
seismic
data allowed the complexities of the Attic fault
blocks to be imaged for the first time.
A large paleoarch occurs in the south-central part of the East Flank of Block I and is characterized by northwest-striking normal faults (FIGURE 2, FIGURE 3, FIGURE 7, FIGURE 8, FIGURE 9, and FIGURE 10). The paleoarch trends northwest and is 6-10 km wide and at least 60 km long, extending into the Lagoven area to the east. This arch may be the northwesternmost continuation of the Merida Arch (Lugo and Mann, 1995). The arch does not appear to extend across, or to have been offset along, the Icotea fault. The younger Icotea and Eastern Boundary fault systems cut the arch (FIGURE 2). The paleoarch appears to have been a buttress to later fault deformation, as shown by the uplift of the southern and northern Attic fault blocks on the sides of the arch (FIGURE 9). The northwest-striking faults delineate the arch and are parallel to subparallel to one another and dip to the northeast and southwest (FIGURE 2, FIGURE 8, FIGURE 9, and FIGURE 10). Individual faults range from 1 to 5 km in length and are curvilinear with some showing oblique slip. Both planar and listric faults occur, and some of these faults have been re-activated as reverse faults during later compression and inversion. Typical secondary normal fault structures such as roll-over and drag folds and antithetic and synthetic faults are associated with these faults (Withjack et al., 1995). Many of these northwest-striking faults are deep-seated and define horsts and grabens on the arch. The Cretaceous to C-5 strata have been folded and faulted uniformly within this arch (FIGURE 7 and FIGURE 10). The arch is eroded, with almost all of C-4 and C-5 strata locally removed.
The origin of the paleoarch in Block I is related to the Merida arch and probably represents one of two foreland bulges that developed in front of a series of southwest-advancing thrust nappes related to the collision of the Caribbean and South America plates.
The West Flank or graben area of Block I is very different
from the East Flank in both its structure and its stratigraphy.
Structurally, the West Flank is downthrown 1-2 kms to the west
along the Icotea /Attic fault system (FIGURE
8, FIGURE 11). This flank is
characterized by three subparallel to parallel prominent
northeast-striking fault zones that merge with the Icotea and
Attic fault system (FIGURE 2 and FIGURE 3). These faults are linear, 12-15
kms long, and mainly have reverse motion with 50-100 m of
displacement. At depth these faults merge with the Icotea/Attic
fault zones to the east (FIGURE 5, FIGURE
6, and FIGURE 11).
These structures are young and cut most of the older
northwest-trending structures and the paleoarch, which are poorly
imaged in the West Flank. This
3-D
seismic
interpretation of
these faults and their trends is significantly different from the
original mapping in the area.
The Eastern Boundary fault is a major north-northeast-striking fault system that occurs on the eastern side of Block I (FIGURE 1 and FIGURE 2). The fault zone consists of closely spaced, subparallel normal and reverse faults that bound the east side of the horst block and are subparallel to the Icotea fault (FIGURE 2, FIGURE 5, and FIGURE 6). This fault system merges with the Icotea fault north of Block I, forming a wedge-shaped basin between these two fault systems. This fault system continues to the north and south of Block I (FIGURE 2); in Block I, it is 16-20 km long with total vertical displacements up to 1 km. The main fault trace is listric and dips to the east-southeast with prominent roll-over fold locally dipping into this fault (FIGURE 5 and FIGURE 6). Locally, the fault has been inverted, re-activating the listric fault into a reverse fault, with the Miocene strata being folded and displaced above this fault. The main folds associated with this fault system are to the east of Block I in an adjoining concession. An asymmetric half graben, containing a clastic wedge, occurs in the extreme northeastern part of Block I (FIGURE 5 and FIGURE 6) along the Eastern Boundary fault. This clastic wedge thickens in the C-1 to C-4 sands interval to the east-northeast onto the adjacent area. In addition, it onlaps the arch in the south-central part of Block I and is not present in the south-southwest part of the block. The top of the wedge is characterized by an angular unconformity and the base by stratigraphic onlap.
The Tertiary tectonics of Block I are summarized by (1) early Eocene compression, forming reverse faults on both sides of the horst block, followed by uplift and erosion; (2) early Eocene extension and transpression along the side of a Jurassic graben system with C-7 to C-5 sands deposition; (3) compression, inversion, and block rotation in the middle to late Eocene with development of the paleoarch, folding, faulting, uplift, and local erosion followed by (4) stratal onlap and listric faulting over older structures during C-4 to C-1 sands deposition; (5) inversion during the late Eocene, with uplift and erosion; and, (6) following the early Miocene-related Andean orogeny, deposition was followed by inversion with re-activation of some of the older Eocene normal faults into reverse and thrust faults such as occurred along the Attic and Eastern Boundary faults (FIGURE 5 and FIGURE 6). Sedimentation occurred throughout the Eocene and was strongly influenced by tectonism, as evidenced by the development of paleoarch and listric faults along with the deposition of clastic wedges and stratal onlap surfaces.
SEISMIC
STRATIGRAPHY AND SEDIMENTOLOGY
The stratigraphic section of the East Flank of Block I includes, from oldest to youngest: pre-Triassic basement rocks; the Jurassic graben La Quinta Formation; the Cretaceous Rio Negro, Cogollo Group, La Luna, Colon, and Mito Juan formations; the Paleocene Guasare Formation; the Eocene Misoa Formation; the Miocene La Rosa, Lagunillas, and La Puerta formations; and the Quaternary El Milagro Formation (FIGURE 4). Only the lower part of the Eocene Misoa Formation is preserved in Block I; it includes the C-1 to C-7 sands (FIGURE 5 and FIGURE 12). Most of the Eocene B sands and all of the Pauji were either eroded or not deposited in this area. The section on the West Flank is thicker than that on the East Flank and, in addition, contains the B-8 and B-9 sands.
The Block I Eocene section is bounded by two major bracketing
unconformities, the E1 (25 Ma) and E2 (54 Ma) (Maraven
Exploration
Regional Study Team, 1995, personal communication).
The Eocene stratigraphic section contains two main depositional
sequences, the C-1 to C-4 sands and the C-5 to C-7 sands that are
separated by an onlap surface at the top of C-5 (FIGURE 5). At least seven disconformities
occur within the Eocene section and allow the section to be
subdivided into eight sequences in the horst block (FIGURE 5 and
FIGURE 12).
The E1 unconformity spans 16-50 Ma and is considered to be 25
Ma (late Oligocene) in this area. It is an angular unconformity
and separates the Oligocene to Miocene basal Santa Barbara member
(16-25 Ma) from the various Eocene Misoa C sands (45-54 Ma). This
unconformity is very distinctive on
seismic
profiles and
truncates all underlying strata (mainly C-3 to C-5 sands). The
upper Eocene depositional sequence (C-1 to C-4 sands) is a
wedge-shaped section that has stratal onlap onto the older C-5
sand and is shale prone. This sequence thickens to the northeast
and is not found in the south-southwestern part of the East
Flank. The lower Eocene depositional sequence contains C-5 to C-7
sands, which are subparallel to one another. This section has a
relatively uniform thickness and is sand-prone across the East
Flank of Block I. The lower E2 unconformity (54 Ma) occurs at the
top of the Guasare Formation and is a major disconformity in the
area. Incised valleys filled with C-7 sands are locally cut into
this surface (FIGURE 12).
Several attempts at establishing a sequence stratigraphic
framework for the Maracaibo Basin (Perdomo and Bot, 1986;
Marais-Gilchrist and Higgs, 1993; Pestman et al., 1994; other
unpublished studies by BP and TOTAL, among others) have been
made. Our study is built on the recognition of major
unconformities and
seismic
markers that have been age-dated by
well control and paleontology by Maraven and S. A. Consultores
CSC (W. Wornardt, 1995, personal communications) during the past
40 years (FIGURE 4, FIGURE
5, and FIGURE 12). There was no
attempt to correlate the unconformities and sequence boundaries
with the global sea level curves (Haq et al., 1988) as was done
by Marais-Gilchrist and Higgs (1993). Instead, our study tried to
integrate the local stratigraphic nomenclature of the Misoa C
sand with third- and fourth-order
seismic
events, namely, the
recognition of sequence boundaries, marine-flooding surfaces, and
systems tracts at a
seismic
level and parasequences at a
log-correlation level. We have found that several of the major
unconformities are time-transgressive in this area and span long
periods of time. For example, the E1 unconformity represents a
possible 39 Ma erosional marker and/or nondepositional interval
(from 16 to 45 Ma). In different parts of the Maracaibo Basin,
the age relations of unconformities vary (Pestman et al., 1994),
especially where they cut and merge with one another.
The C sands of Block I are up to 760 m thick and subdivided into eight sequences within the horst block (FIGURE 5 and FIGURE 12). They consist of transgressive, highstand, and lowstand systems tracts deposited in coastal and shallow-marine environments. Overall, the C sands in Block I form a retrogradational clastic sequence that is sand prone at the base, becoming more shale prone upwards (FIGURE 12 and FIGURE 13). This back-stepping pattern is attributed to rapid subsidence and net southwestward basin transgression during deposition of the C sands. Afterwards, the B sands were deposited as a progradational outbuilding sequence and are locally preserved in the West Flank. Facies and formation names change dramatically from southwest to northeast. The Misoa Formation varies in facies characteristics in both space and time. The paralic and shallow-marine Misoa Formation is transitional into the fluvial Mirador in the southwest, and may be laterally equivalent with the deep-marine late Paleocene to early Eocene Trujillo Formation and middle(?) to late Eocene Pauji to the northeast (FIGURE 13). Block I is located in the Misoa part of these facies associations (FIGURE 13 and FIGURE 14). Regionally, structure controlled sedimentation in the Maracaibo Basin. The ancestral Orinoco River was forced to cross several paleoarches that formed as foreland bulges subparallel to series of southwest-directed thrust nappes.
The Eocene section on the East Flank horst contains nine
sequence boundaries (SB) and eight marine-flooding surfaces (MFS)
that define eight sequences (FIGURE 5 and FIGURE 12). Sequence boundaries occur at
the top of Eocene unconformity E1 (SB1), within lower C-2 sand
(SB2), middle C-3 sand (SB3), within the C-4 sand (SB4 and SB5),
middle C-5 sand (SB6), middle C-6 sand (SB7), lower C-6 sand
(SB8), and at the top of Guasare unconformity E2 (SB9). Each of
these disconformities or unconformities has a corresponding
maximum marine-flooding surface. The Eocene sections east of the
Eastern Boundary fault and west of the Icotea fault system have
not been correlated in this study and are apparently different.
The transgressive systems tracts make up about 70-80% of the C
sands and are sandstone prone at the base (C-7 and C-6 sands),
becoming more shale prone in the upper C sands (C-2 and C-3
sands). C-4 and C-5 sands contain nearly equal amounts of shale
and sandstone (FIGURE 12). The
transgressive systems tracts consist of stacked marine channels
and bars arranged into thinning- and fining-upward or blocky
intervals (FIGURE 12). There are two
types: (1) thin basal transgressive sheet sands that are 10-30 m
thick, and (2) thicker transgressive retrogradational intervals
100-200 m thick (FIGURE 12, FIGURE 14, and
FIGURE 15).
Both types of transgressive systems tracts are commonly overlain
by thinner highstand systems tracts. The base of each
transgressive systems tract is characterized by a sequence
boundary and its top by a marine-flooding surface. Each systems
tract consists of an erosional channel or channels characterized
by bell-shaped log patterns that become more shaly upward. The
seismic
facies of the transgressive systems tract consists of
discontinuous reflections of variable amplitude and are best
viewed in horizon slices. The impedance contrast between the
relatively thick sandstone intervals and the underlying and
overlying shales usually produces several reflections.
Downlapping
seismic
events occur locally at the lower sequence
boundary, with parallel to subparallel reflections occurring at
the upper marine-flooding surface. Horizon- and flattened
time-slice maps show north-trending linear amplitude events
interpreted to be channels and bar complexes (FIGURE
15). Net sand and oil accumulation maps mirror these
amplitude trends. The transgressive systems tracts are the best
reservoirs in the field area, with porosities in the 18-25% range
and permeabilities up to several hundred md (Muñoz et al.,
1994).
Highstand systems tracts comprise about 10-15 percent of the C
sands and are mainly shale prone (FIGURE 12).
Individual highstand cycles are 10-30 m thick and characterized
at the base by a marine-flooding surface and at the top by a
sequence boundary. The base of this systems tract is
predominantly shale and is transitional upward into units with
alternating sand and shale. On logs, this system tract is
characterized by a shale, which forms seals over the
transgressive systems tracts in these retrograding systems. At
least seven highstand systems tracts are recognized in the horst
block of Block I. Seismically, the highstand systems tracts occur
as both continuous and discontinuous, subparallel reflections of
variable amplitude. No distinctive toplap or baselap patterns
were visible on
seismic
studies in this facies, probably due to
the factor that the
seismic
resolution was below minimum
thickness values of this facies for these depths. This is
considered a nonreservoir facies in this area.
Lowstand systems tracts make up 10-15% of the Misoa Formation
in the block. Both incised valley fills and lowstand wedges are
recognized (FIGURE 12). The incised
valley fills are found at the top of the Guasare, where the lower
C-7 sands infill erosional channels. The incised valleys are less
than 100 m thick, trend north-northeast, contain the coarsest
sands in the system, and generally contain water in the field
area. They have a blocky log signature, and core studies show
tidal bundles characteristic of subtidal channels (well VLA-186).
They are overlain by a transgressive systems tract in this area.
At least two, and possibly three, lowstand wedges (above SB4 and
SB6) occur in Block I and are best developed in the northern part
of the block (FIGURE 12). They are 30-60
m thick and are characterized by thickening- and
coarsening-upward log patterns of mixed sandstone and shale. The
upper lowstand wedge (above SB4) onlaps and pinches out against
the paleoarch. On
seismic
profile, the incised valleys can be
locally seen in cross section, where they are enhanced by
structure. Both the lowstand wedges and the incised valleys
downlap sequence boundaries. Both facies consist of discontinuous
reflections of variable amplitude. These two subfacies are
locally productive in Block I, with porosities in the 12-20%
range and less than 100 md.
In Block I, the main reservoirs are transgressive deposits of
the Misoa C sands and the basal Santa Barbara member (FIGURE 4 and
FIGURE 12).
Reservoir trends and facies associations were determined using
logs, cores, and amplitude and flattened horizon time-slice maps
(FIGURE 14 and FIGURE
15). The composite geologic and depositional model (FIGURE 14) for the Eocene Misoa C sands
recognizes north-trending marine channels and bar systems
deposited mainly subtidally in front of a back stepping tidally
influenced delta system (FIGURE 14 and FIGURE 15). Water injection, production,
petrophysical, and geochemical data shows similar north-south
trends (Muñoz et al., 1995) that match the
seismic
amplitude
patterns in this area. Recently found microfossils in
marine-flooding surfaces in the lower C-4 sands suggest inner
neritic depths for Block I (W. Wornardt, 1995, personal
communications). Modern examples of tidally-influenced
transgressive deltas that may be similar to the Misoa C sand-rich
system include the subtidal part of the Colorado River delta in
Mexico, the Mahakam delta in Indonesia, and the Fly delta in
Papua New Guinea (Meckel, 1975; Galloway and Hobday, 1983). In
the Eocene B sands in the onshore Lagunillas field, Maguregui and
Tyler (1991) also documented a tidal deltaic paleoenvironment
setting (FIGURE 1).
EASTERN BOUNDARY FAULT PROSPECT
Using
3-D
seismic
data, the Eastern Boundary fault was
remapped and a new structural model was developed. Older 2-D data
coverage was inadequate in this area, and no wells had been
drilled in this area of Maraven's acreage during the past 36
years. The use of
3-D
seismic
data allowed this complex structure
to be imaged for the first time and the locations of previous
wells to be better evaluated.
New Concept From
3-D
Seismic
Data
The Eastern Boundary fault is interpreted to be a narrow,
complex, north-northeast striking fault zone within a syncline.
It is more than 10 km long and 0.5-1 km wide (FIGURE
16 and FIGURE 17). Originally, the
fault formed as an east-dipping listric fault; it was later
inverted, forming a small and distinctive anticline cut by one or
more northeast-striking antithetic faults that dip to the west
and by several northwest-northeast-striking normal and reverse
cross faults. The main structure can be subdivided in most places
into three distinctive parts: (1) roll-over fold, (2) upthrown
antithetic, tilted-fault block, and (3) downthrown, antithetic
fault block (FIGURE 17 and FIGURE 18). The inversion structure clearly
formed post-Eocene, as seen seismically by the folding and uplift
of the Eocene unconformity. Much of the fault zone is outlined by
distinctive higher-amplitude
seismic
events, which allowed this
trend to be accurately mapped and potential reservoirs to be
calibrated (Figures FIGURE 19 and FIGURE 20). All the previous wells in this
area were drilled into the upthrown and/or the downthrown parts
of the main antithetic fault(s) that dipped into the Eastern
Boundary fault (FIGURE 18). These wells
had mixed results based on the close proximity of reservoirs to
sealing faults. Based on the new mapping, a roll-over fold
prospect with four-way closure was identified in a fault block,
approximately 0.8 km long by 0.5 km wide, that was bounded by
faults on all sides (Figures 16-20).
Results
Three wells were drilled during late 1994 and early 1995
(VLA1131; its twin, VLA1147; and VLA1159) to test the prospect. A
1000-m-thick hydrocarbon-bearing zone, including the Miocene
Lagunillas Formation, the Santa Barbara member of the La Rosa
Formation, and the Eocene Misoa C-1 to C-6 sands (FIGURE 4), was encountered with original
pressures in the fault block. Gas and condensate were tested in
the C-1 to C-5 levels and are believed to be responsible for the
higher-amplitude
seismic
events within this fault zone. Oil was
found in the Miocene strata and the Misoa C-5 and C-6 sands.
Initial flow rates were 1400 BOPD from the C-6 sand, 200-300 BOPD
from the C-5 sand, and 8 MCFGD from the C-3 sand. A check-shot
survey and synthetic seismogram were used to calibrate the
3-D
seismic
data, and better identify the reservoirs and the
amplitude events (FIGURE 20). A major
sequence boundary or angular discordance recognized on the
3-D
seismic
data at the top of the C-5 sand (FIGURE
19) may allow the Eocene reservoirs here to be developed as
two separate reservoir units (C-6/C-5 oil-bearing unit and C-1 to
C-4 gas-bearing units).
Based on the success of these wells in this synclinal area, several new well localities and prospects have been identified. In addition, further testing of the existing reservoirs and mapping of the multiple reservoir intervals of this area are planned to optimize field development.
VLA1035 HORIZONTAL WELL IN THE ATTIC
This development well was drilled in 1992 and required a
horizontal section to drain the reservoirs from an Attic fault
block, which have been producing oil for more than 40 years (FIGURE 21 and
FIGURE 22).
The percentage of water in the produced oil zone in this block
had increased from 20% in 1960 to over 85% in 1991. Water-coning
problems in the field had rendered any additional vertical wells
uneconomical because of the steep dip of the fault block and the
strong water drive. The remedy was to drill a horizontal well in
the upper zone of the producing structure, targeting a thick
continuous sand at the top of the oil column. The
3-D
seismic
data coverage played an important role in selecting the well
location by documenting existing faults and their positions,
stratigraphic and amplitude trends, and terminations and
pinchouts of strata. In addition, the use of closely spaced (40
m) inlines and random well-tie lines allowed accurate mapping of
the dip and strike of the C-7 reservoir, which was critical for
locating the drainhole within the productive interval. The strike
of the reservoir horizon was parallel to the sealing Icotea fault
and dipping steeply to the east. The structure consisted of an
upthrown reverse fault block, or "pop-up" structure,
bounded on the west by the Icotea fault and to the east by the
Attic reverse fault (FIGURE 21). The
Attic fault block here is only 0.6 km wide and less than one km
long. The horizontal well was drilled parallel to the strike of
the reservoir in an updip position above the existing oil-water
contact. The well trace followed a high-amplitude reflection
calibrated to be part of the upper C-7 reservoir target that was
interpreted to be a channel, based on sedimentologic studies (FIGURE 23).
Results
The VLA1035 well was Maraven's first horizontal well in Lake
Maracaibo and successfully utilized a new drilling technique
combined with
3-D
seismic
data to better develop existing field
areas (Belloso et al., 1994). More than 300 m of horizontal pay
was drilled in the well in continuous channel sand complex
estimated to have a real vertical thickness of only 12 m. The
well originally tested more than 2400 BOPD, has produced more
than 800,000 BO between 1992 to 1995, and is still producing more
than 700 BOPD.
Based on the success of this well, four more horizontal wells were drilled in the northern Attic region of Block I, mainly as re-entry localities (FIGURE 22). In addition, several new horizontal and highly deviated wells are planned for areas that require maximum penetration of highly dipping strata in the Attic fault zone in the near future.
CONCLUSIONS
(1) Further development of older producing fields, such as
Maraven's Block I, can be greatly improved by using
3-D
seismic
data combined with all other available data. Remapping of
stratigraphic tops, horizons, and faults, combined with
production data, allows the evaluation of earlier wells and the
accurate location of any future wells and/or injectors. In
particular, the precise location of fault and stratigraphic
terminations can be accurately determined and mapped.
(2) A new, more complete structural model has reduced the
necessity for using over half of the original faults recognized
in the field. Complex faults, such as the Attic, Icotea, and
Eastern Boundary faults were found to consist of several fault
traces and to be locally compartmentalized. Stratigraphic tops
and horizons were combined with sequence boundaries,
marine-flooding surfaces, and depositional sequences to better
characterize reservoir trends and facies in the field. Predictive
depositional models were made utilizing all available data. The
interpretation of
seismic
horizons, various derivations, and
fault polygon maps have led to the complete revision of the
structural and stratigraphic models for Block I.
(3) Using
3-D
seismic
and log displays in the form of cross
sections, fence diagrams,
seismic
cube and chair displays,
isometric projections, and time and horizon slices greatly
improved confidence in drilling any prospect or infill locality.
The combined graphic representation of
seismic
, log, and map data
allows greater visualization of prospects and concepts to be
presented to management.
(4)
3-D
seismic
data were used in Block I to better locate
wells and to develop new
exploration
and production concepts as
shown in the two successful wells drilled: the VLA1131 discovery
along the Eastern Boundary fault and the VLA1035 horizontal well
in the Attic fault zone. Both wells tested concepts for
developing new areas in an old producing field and led to
drilling of other wells using these new concepts.
ADDENDUM
In the year following the writing of this chapter, Maraven tested the three wells described in the VLA1131 Discovery section. The wells (VLA1131, VLA1147, and VLA1159) initial production totalled 1392 BOPD; VLA1131 tested 264 BOPD, VLA1147 produced 825 BOPD, and VLA1159 tested 305 BOPD from single horizons. Each of these wells will develop other horizons through their life to better exploit and develop the thick potential stratigraphic section present in each well.
Acknowledgments
We thank the many people who have contributed to this project,
particularly the Maraven Production of Segregación Lagomar
Group; Maraven
Exploration
Regional Study Team; Maraven/Amoco
Cretaceous project, S.A. Consultores CSC (Muñoz et al, 1994);
Maraven Sedimentology (E. Sampson and F. Chacartegui) and
Geochemistry groups (L. Mompart); log correlation and
petrophysical mapping by S.A. Consultores CSC (P. Jam, J.
Delgado, and A. J. Guerrero); initial sequence stratigraphy
interpretations by R. M. Mitchum and paleontologic studies by W.
W. Wornardt. P. Bartok, S. K. Ghos, P. J. Pestman, and P. Weimer
reviewed various drafts of this manuscript and earlier abstracts.
Maraven
Exploration
Regional Study Team kindly provided the age
and stratigraphic relationships in the Maracaibo Basin and
discussed their original work with us. Some of the figures used
in this paper were drafted by C. A. M. Edo and S.A. Consultores
CSC. Maraven S. A. supported this project and kindly gave
permission that it be published.
REFERENCES CITED
- Bartok, P., T. J. A. Reijers, and I. Juhasz, 1981, Lower Cretaceous Cogollo Group, Maracaibo Basin, Venezuela: Sedimentology, diagenesis, and petrophysics: AAPG Bulletin, v. 65, p. 1110-1134.
- Bartok, P., 1993, Prebreakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region: Tectonics, v. 12, p. 441-459.
- Belloso, L., F. Chacartegui, B. Cortiula, F. Escorcia, T. Mata, E. Sampson, R. Casco, J. Husband, G. Monsegui, C. Taylor, B. Lesso, and T. Suárez, 1994, Teamwork renews an old field with a horizontal well: Schlumberger Oilfield Review, v. 6, p. 59-69.
- Bueno, E., J. Zubizarreta, J. Pinto, C. Taylor, and E. Prieto, 1993, Interpretación estructural de la Falla Icotea, en el Lago de Maracaibo, Venezuela (Abs.): AAPG Bulletin, v. 77, p. 309.
- Delgado, I., 1992, Lama Field-Venezuela, Maracaibo Basin, Zulia State, in N. H. Foster and E. Q. Beaumont, eds., Structural Traps III, Treatise of Petroleum Geology, Atlas of Oil & Gas Fields: AAPG, p. 271-294.
- Galloway, W. E., and D. K. Hobday, 1983, Terrigenous clastic depositional systems: Springer-Verlag, New York, 423 p.
- Haq, B. U., J. Hardenbol, and P. R. Vail, 1988, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in C. K. Wilgus, H. W. Posamentier, C. A. Ross, C. G. St. C. Kendall, and B. S. Hastings, eds., Sea-level changes: an integrated approach: SEPM Special Publication 42, p. 71-108.
- Link, M. H., C. K. Taylor, E. Bueno, and R. M. Mitchum,
1994, Structure, stratigraphy, and sequence stratigraphy,
Maraven's Block I: A
seismic
perspective, Maracaibo
Basin, Venezuela, in VII Congreso Venezolano de
Geofísica, Memorias 1994, p. 401-408. - Lugo, J., 1992, Historia tectónica a lo largo de los sistemas de fallas de Icotea y Pueblo Viejo, Cuenca de Maracaibo: VI Congreso Venezolano de Geofísica, p. 118-124.
- Lugo, J., and P. Mann, 1995, Jurassic-Eocene tectonic evolution of Maracaibo Basin, Venezuela, in A. J. Tankard, R. Suárez Soruco, and H. J. Welsink, eds., Petroleum Basins of South America, AAPG Memoir 62, p. 699-725.
- Maguregui, J., and N. Tyler, 1991, Evolution of middle Eocene tidal-dominated sandstones, Lagunillas field, Maracaibo Basin, Western Venezuela, in A. D. Miall and N. Tyler, eds., The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery: SEPM Concepts in Sedimentology and Paleontology, v. 3, p. 233-244.
- Marais-Gilchrist, G. and R. Higgs, 1993, Secuencia estratigráfica de la Formación Misoa (Eoceno), Lago de Maracaibo, Venezuela (Abs.): AAPG Bulletin, v. 77, p. 332.
- McClay, K. R., and P. G. Buchanan, 1991, Thrust faults in inverted extensional basins, in K. R. McClay, ed., Thrust tectonics: Chapman & Hall, p. 93-104.
- Meckel, L. D., 1975, Holocene sand bodies in the Colorado
Delta area, northern Gulf of California, in M.
L. Broussard, ed., Deltas models for
exploration
, Houston
Geological Society, p. 239-265. - Mitchum, R. M., 1977,
Seismic
stratigraphy and global
changes of sea level. Part I: Glossary of terms used in
seismic
stratigraphy, in C. E. Payton, ed.,
Seismic
Stratigraphy--Applications to Hydrocarbon
Exploration
: AAPG Memoir 26, p. 205-212. - Muñoz, N. G., L. Mompart, and S. C. Talukdar, 1995, Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field (Abs.): AAPG Annual meeting volume, Houston, TX.
- Muñoz, N. G., M. H. Link, J. Delgado, C. K. Taylor, R.
M. Mitchum, R. M. and P. J. Muñoz, 1994, Integrated
sedimentological and
seismic
studies, Eocene Misoa C
Sands, Maraven's Block I, Maracaibo Basin, Venezuela, in
VII Congreso Venezolano de Geofísica, Memorias 1994,
Caracas, Venezuela, p. 259-266. - Perdomo, J. L., and P. Bot, 1986, Eocene
seismic
stratigraphy in the Maracaibo Basin, in III
Congreso Venezolano de Geofísica, Caracas, p. 474-483. - Pestman, P. J., P. Bartok, S. K. Ghosh, and L. Melendez, 1994, Influencia tectónica y de fluctuaciones del mar en sistemas fluviales, con ejemplos del Eoceno en la cuenca de Maracaibo, Venezuela, in Simposia Bolivariano, Exploración Petrolera en las Cuencas Subandinas: Memoria, Puerto La Cruz, p. 65-84.
- Posamentier, H. W., and P. R. Vail, 1988, Eustatic controls on clastic deposition II sequence and systems tract models, in C. K. Wilgus, H. W. Posamentier, C. A. Ross, C. G. St. C. Kendall, and B. S. Hastings, eds., Sea-Level Changes: An Integrated Approach: SEPM Special Publications 42, p. 125-154.
- Roberto, M., B. Duval, and C. Cramez, 1993, Inversión tectónica en el área de Maracaibo, Venezuela: AAPG Bulletin, v. 77, p. 343.
- Vail, P. R., 1987,
Seismic
stratigraphy interpretation
using sequence stratigraphy, Part I:
Seismic
stratigraphy
interpretation procedure, in A. W. Bally, ed.,
Atlas of
Seismic
Stratigraphy: AAPG Studies in Geology
27, v. 1, p. 1-10. - Van Wagoner, J. C., R. M. Mitchum, Jr., K. M. Campion,
and V. D. Rahmanian, 1990, Siliciclastic sequence
stratigraphy in well logs, cores, and outcrops: concepts
for high-resolution correlation of time and facies: AAPG
Methods in
Exploration
series 7, 55 p. - Williams, G. D., C. M. Powell, and M. A. Cooper, 1989, Geometry and kinematics of inversion tectonics, in M. A. Cooper, and G. D. Williams, eds., Inversion Tectonics: Geological Society London Special Publication 44, p. 3-15.
- Withjack, M. O., Q. T. Islam, and P. R. La Pointe, 1995, Normal faults and their hanging wall deformation: an experiment study: AAPG Bulletin, v. 79, p. 1-18.
FIGURE 1. Index map showing Lake
Maracaibo. (A) Map of major onshore fields, trace of the Icotea
and Eastern Boundary faults, location of Lagocen regional
seismic
line 15, Jurassic graben outline (Bartok et al., 1981), and
position of Block I. (B) Sketch of west-east Lagocen 15
seismic
line, highlighting the Jurassic basin and Icotea and Eastern
Boundary fault-bounded horst of Block I, and major unconformities
(U).
FIGURE 2. Simplified structure map at
the top of the Guasare Formation for Block I, modified from the
Guasare first derivative or dip map shown in FIGURE
3. Major faults; the location of the paleoarch; Block I and
seismic
survey outlines; the horst and graben; and West and East
Flank basins are shown. The position of inline 40 and crossline
417 are indicated. The location of Horizontal Well and the
Eastern Boundary Fault Prospect areas are highlighted with a box.
FIGURE 3. Dip or first derivative map on the top of the Guasare Formation for the entire block, showing major fault (F) patterns, position of the paleoarch, West and East flanks, and inline and crossline numbers.
FIGURE 4. Block I stratigraphic
section, highlighting ages, rock units (formations),
unconformities, and major
seismic
markers.
FIGURE 5. Geologic sketch of the horst
area of Block I, showing the unconformities, major structures,
sequence boundaries, various C sand members of the Misoa
Formation, and the major stratigraphic relations for the East
Flank of Block I. Timing of structural features from oldest to
youngest is indicated with (1)-(4). See FIGURE
6 for
seismic
line interpretation.
FIGURE 6. West-east inline 40 across
the East Flank of Block I, highlighting the major structures,
unconformities, and stratigraphic relationships. See FIGURE 2 for location of inline;
FIGURE 4 for
seismic
markers; and FIGURE 5 for schematic interpretation of
faults, the various C sands, and sequence boundary localities.
Seismic
markers include the Lower Cretaceous (LK) unconformity,
Upper Cretaceous Socuy member, top of the Paleocene Guasare
Formation, and top of Eocene Unconformity (see FIGURE 4).
FIGURE 7. Chair display of the
complete
3-D
seismic
survey, looking northwest at the East Flank
of Block I. The Icotea fault, the southern and northern Attic
blocks, northwest-striking faults that delineate the paleoarch,
inline and crossline localities, top of Guasare and Eocene
unconformity
seismic
markers, and depth in time (ms) (see slice)
are indicated.
FIGURE 8. A
3-D
isometric projection
on the top of the Guasare Formation in the West Flank, looking
northeast and highlighting the Icotea and the subparallel reverse
faults of the West Flank that merge with the Icotea fault forming
triangle- to wedge-shaped fault blocks. The southeast corner of
the West Flank adjacent to the Icotea fault is down-dropped about
1/2-1 km to the west, whereas the northeast corner adjacent to
the Icotea fault has a displacement of almost 2 km.
FIGURE 9. A
3-D
isometric projection
on the top of the Guasare Formation in the East Flank, looking
northwest to highlight the Icotea and Attic faults. The northern
and southern upthrown Attic blocks are bounded by reverse faults
that dip to the west and are separated by a saddle in the middle.
The saddle coincides with the paleoarch, which occurs near the
south-center of the East Flank and is delineated by
northwest-striking normal faults that dip both to the northeast
and southwest. The two Attic fault blocks may have formed due to
shortening of thicker section on sides of the paleoarch during
later fault deformation.
FIGURE 10. North-south crossline 417
across the East Flank, flattened on the top of Eocene
Unconformity, and highlighting the paleoarch and its
northwest-striking faults (F). See FIGURE 2
for location of crossline.
Seismic
markers include the Lower
Cretaceous (LK) unconformity, Upper Cretaceous Socuy member, top
of the Paleocene Guasare Formation, and top of the Eocene
Unconformity (see FIGURE 4).
North-to-south onlap (arrows) can be seen above the Guasare
marker, starting just above the 500 ms depth that is flattened on
the Eocene unconformity.
FIGURE 11. Chair display of the
3-D
seismic
survey, looking northeast at the West Flank of Block I.
The Icotea fault strikes northeast across the chair display and
is characterized by a nearly vertical trace that is offset and
displaced by the Attic fault (best seen in the upper central part
of the chair display). Northeast-striking antithetic reverse
faults are subparallel to and dip into the Attic/Icotea faults.
The Eocene section is 1-1/2 times thicker on the West Flank than
on the East Flank. Attic blocks subparallel the Icotea fault to
the east. Inline and crossline localities; top of Cretaceous,
Guasare, and Eocene unconformity
seismic
markers; vertical scale
in time (ms) (see slice 4000, 3188, 2748) are indicated.
FIGURE 12. Type log and sequence stratigraphic diagram for the Eocene Misoa C sands in the East Flank of Block I, showing tops, sequence boundaries, marine-flooding surfaces, and systems tracts. This stratigraphic log is a composite log for the area east of the Eastern Boundary fault.
FIGURE 13. Stratigraphic model for the Eocene strata of the Maracaibo Basin. (A) Simplified early to middle Eocene paleogeographic map, showing southwest to northeast transition from fluvial to shallow-marine to deep-marine facies relations; and (B) southwest to northeast stratigraphic cross section, highlighting the transition from the Mirador to the Misoa to the Trujillo formations and from the nonmarine to the deep-marine facies relations, the various B and C sands of the Misoa Formation, and the retrograde (back-stepping) of the C sands vs. progradation (out-building) stacking patterns of the B sands.
FIGURE 14. Depositional model for the Misoa and Mirador formations at C-5 to C-7 time. A retrograde back-stepping pattern of sand-prone sedimentation occurred during lower Misoa deposition. Shallow-marine facies (Misoa) were deposited and are transitional from nonmarine units (Mirador) to the southwest to deep-marine facies (Trujillo) to the northeast. Depositional trends are aligned northwest, north, and northeast and follow the original confining shape of the northeast-trending basin.
FIGURE 15. Flattened horizon-time slice and sketch at the C-5U horizon level. (A) Horizon-time slice taken at 260 ms above the top of Guasare. The north-trending linear amplitudes are cut by major northwest-striking faults (white fault traces). (B) Sketch of the north-trending amplitude patterns interpreted from these amplitudes and other core and log data to be subtidal marine channels. Fault abbreviations: D = down; U = up.
FIGURE 16. Simplified structure map of
the Eastern Boundary fault, showing wells, prospects, trends of
seismic
amplitude events, and major fault patterns at the C-6,
C-5, and C-4 levels. The positions of inline 28 and crossline 605
are shown in FIGURE 18, FIGURE 19, and
FIGURE 20.
FIGURE 17. Composite structural model
for the Eastern Boundary fault based on sketches made from
west-east
seismic
lines, highlighting the compartmentalization of
the narrow structure into (1) a roll-over fold, (2) upper
antithetic, tilted-fault block, and (3) a lower antithetic,
tilted-fault block. Horizons and the relative positions of key
wells are indicated (see FIGURE 16).
FIGURE 18. Fence diagram of the
VLA1131 well, showing the structural closure, faults, and
unconformity at the top of the C-5 horizon. West-east inline 28
and north-south crossline 605 make up the two sides of the fence
diagram. See FIGURE 16 for location of
seismic
lines. The high-amplitude
seismic
events outline the C-4
to C-6 reservoirs.
FIGURE 19. North-south
seismic
crossline 605, showing the structure and amplitude patterns for
part of the Eastern Boundary fault. Top of C-5 unconformity,
major faults, and stratigraphic tops are indicated. Note the
reversal of dips below the unconformity.
FIGURE 20. Synthetic seismogram, gamma
ray log, and west-east inline 28, showing the structure and log
character for the VLA1131 discovery well and the VLA1147 twin
well. This display shows, from left to right: sonic log,
reflectivity, synthetic seismogram,
seismic
reference trace
(trace at well location), and an interpreted section of inline 28
from the
3-D
seismic
survey with gamma ray log overlain at the
well location. Other abbreviations: BLR = basal La Rosa
Formation, ER-EO = Eocene Unconformity, and CDP = common depth
point.
FIGURE 21. Index map for the VLA1035
well in the northern Attic fault block. Contours and structures
are on the top of the C-7 sand. Key wells and
seismic
lines,
position of the chair display, and isometric projection area for
this part of the northern Attic fault zone are indicated.
FIGURE 22. Isometric projection of the northern Attic fault block at the top of the Guasare Formation, showing the location of the VLA1035 well and four other horizontal wells drilled between 1992 and 1995. The success of the VLA1035 well led to the drilling of the VLA408, 459, 780, and 807 re-entries as horizontal or highly deviated wells in this fault block.
FIGURE 23. Chair display of part of the northern Attic block and the VLA1035 well, highlighting the amplitude trends at the top of the C-7/lower C-6 horizon. These amplitude patterns are interpreted to be a map view of north-trending channels as viewed as a chair-time slice and their discontinuous lenticular channel cross sections in an west-east inline direction. See FIGURE 21 for location of chair display.