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Abstract

Extensive dolomitization is prevalent in platform and periplatform carbonates in the Lower-Middle Permian strata in the Midland and greater
Permian basin. Early workers have found that the platform and shelf-top carbonates were dolomitized while slope and basinal carbonates were
remained calcitic, proposing a Reflux Dolomitization Model as the possible diagenetic mechanism. More importantly, they underline that this
dolomitization pattern controls the porosity and forms an updip seal. When applied to the Lower-Middle Permian dolomites in the Midland
Basin, these studies are predominately conducted using well log, cores, and outcrops, and while exhibiting high resolution vertically, such
determinations are laterally sparse, inhibiting regional mapping. This investigation employs Supervised Bayesian Classification and
Probabilistic Neural Networks (PNN) on 3D seismic to create an estimation of the most probable distribution of dolomite and limestone within
a subsurface 3D volume petrophysically constrained. Combining this lithologic information with porosity we then illuminate the diagenetic
effects on a seismic scale. Workflow commences with deriving lithology classifications from well log cross-plots of Neutron Porosity and
Acoustic Impedance to determine a priori proportions of lithologies, and Probability Density Functions (PDF) calculation for each lithology
type. These probability distributions and a priori proportions are then applied to full seismic volumes of acoustic impedance and predicted
NPHI volumes to create a lithology volume and their probabilities. Results suggest do support a regional Reflux Dolomitization Model, in
which the porosity is increasing from shelf to slope while dolomitization is decreasing. However, when a seismic stratigraphic framework is
employed, another possibility is that of an Oscillating Sea Level Dorag Dolomitization Model. With the overprint of subsequent mixing zones
during sea level change, porosity destroying dolomitization would be maximally concentrated in the updip region. However, more work is
needed to better identify the most appropriate model of dolomitization in these Lower to Middle Permian strata. In any case, these results
demonstrate that diagenesis and corresponding reservoir quality in these platforms and periplatform strata can be directly imaged and mapped
on a seismic scale by quantitative seismic interpretation and supervised machine learning methods.
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« Extensive dolomitization is prevalent in platform and periplatform carbonates in
the Lower- middle Permian strata in the Midland and greater Permian basin
(Mazullo, 1994).

* The platform and shelf-top carbonates are usually dolomitized while slope and
basinal carbonates remained calcitic (Saller et al., 1998, Mazullo et al., 1994).

« Reflux Dolomitization is the possible diagenetic mechanism. More importantly, this
dolomitization pattern controls the porosity and forms updip seal.
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 There are numerous studies focused on Lower-Middle Permian dolomites in the
Midland Basin, but they have been mostly conducted using well logs, core and

outcrops. Though they exhibit high resolution vertically, they are laterally sparse.

« Aim of this study is to use Supervised Bayesian Classification and Probabillistic
Neural Networks (PNN) to create estimation of the most probable distribution of
dolomite, limestone and combine this lithology information with porosity to

Illuminate the diagenetic effect in the seismic scale.
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Dolomitization is most likely related
to evaporated seawater

(supersaturated) formed in lagoons.

This evaporated seawater is dense.
Therefore, it seeps downward and

dolomitizes.

Most of the precipitation occurs on

the platform and margin.
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Supervised Bayesian Classification- Creating
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Supervised Bayesian Classification-PDF’s

prob. dens.

The cross plot is convolved with a smooth kernel function:

X; (e.9.Zp)

(Nieto, 2013)

PDFs are built by convolving the data point in the cross-plot
with an operator (it is called kernel function)
This provides the likelihood of each lithology for the given

point in our cross-plot space
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PNN for NPHI Volume Estimation - Training

Training Error

Validation Error

Target Final Attribute
g (viv) (viv)
Colored Inversion-
Neutron Porosity Absolute 0.046053 0.047575
Impedance
Neutron Porosity Envelope 0.040881 0.042741
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“Overtraining”

Next step is to train the Probabilistic Neural Network (PNN) with the given the set of attributes. This process tries to produce

non-linear regression between set of attributes and the target log
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« Confusion matrix shows the match between the lithology from well logs and the predicted lithology

« It provides a key QC for the prediction of the lithology by answering the question, “How often we correctly
classify limestone as limestone (86.89%) or misclassify the limestone as dolomite? (7.12%)

* Note that sand is poorly predicted and often misclassified as shale (80.00%)
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Conclusions and Future Work

 Integration of Supervised Bayesian Classification and Probabilistic Neural Network
(PNN) study in the Midland Basin showed that the dolomitization and corresponding

reservoir quality can be extracted from seismic data.

* Results tie with the regional Reflux Dolomitization model, in which the porosity Is

Increasing from shelf to slope, while dolomitization is decreasing.

* For the next step in this study, CDP gathers will be utilized to perform pre-stack
Inversion. Additionally, Results of this study will be compared to unsupervised

classification methods.
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