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Abstract 

The Niobrara Formation was deposited in the Western Interior Seaway (WIS), which filled an active foreland basin during the Upper 
Cretaceous. The WIS experienced important oceanographic variations and tectonic events during Niobrara time, and resolving their influence is 
critical to mapping petroleum system elements of the greater Denver-Julesburg (D-J) Basin area. To unravel stratigraphic complexity through 
time, sequence stratigraphic surfaces suited to the distal carbonate ramp, and in the context of biozone and isotope geochronology data, were 
correlated through basin-scale well control to create a series of age-constrained isochore maps. At a WIS scale, thickness patterns suggest that 
the basin’s flexural forebulge had migrated eastward to a position along trend with the future Rocky Mountains where it defined the western 
edge of the distal carbonate ramp that developed in the backbulge of the basin. At the D-J Basin scale, early Niobrara deposition (Upper 
Turonian - Lower Santonian) was dominated by patterns of differential sediment accumulation with compensational infilling in the form of 
systematic reversals of stratigraphic thicks and thins through time. This pattern was interrupted in the Lower Santonian by the development of 
sublinear basement uplifts along the trend of the emergent Transcontinental Arch. As a result, sediment accumulation became dominated by 
patterns of draping over the long-lived seafloor paleohighs. Absolute timing of architectural changes in the Niobrara suggests a link between 
Sevier thrusting episodes, a migrating flexural forebulge, and uplifts along reactivated basement shear zones in the distal foreland. The well-
known transgressive-regressive cycles of the Niobrara in the D-J Basin appear to be broadly overprinted by two distinct influences: circulation-
related bottom currents and deposits and the later interference of tectonic uplifts. This dynamic paleo-seafloor morphology was a first-order 
control that shaped the depositional patterns of Niobrara source rock and reservoir rock intervals. 

Conclusions 

• Sequence stratigraphic-based mapping techniques are critical to understanding the stratigraphic architecture and evolution of the Niobrara
Formation in the D-J Basin region
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• The timing of sequence-stratigraphic intervals is constrained by radiometric ages and biostratigraphy 
 
• Age-constrained isochore maps suggest the following key findings: 

 
 Regional scale: the basin’s flexural forebulge was positioned along trend with the future Rocky Mountains where it defined the western 

edge of the Niobrara distal carbonate ramp 
 
 D-J Basin scale: Lower Niobrara (Upper Turonian -Lower Santonian) differential sediment accumulation with compensational infilling, 

suggesting oceanographic processes with little evidence of tectonic uplifts  
 

 D-J Basin Scale: Upper Niobrara (Lower Santonian -Lower Campanian) development of sublinear basement uplifts along reactivated 
shear zones on the emergent TCA; dominance of sediment draping over the long-lived seafloor paleohighs 

 
• Comparison of stratigraphic and petrophysical maps suggests that tectonic/geomorphic features were important controls on the distribution 

and facies of source-prone and reservoir-prone intervals of the Niobrara 
 
• Proterozoic shear zones reactivated in the Lower Santonian are directly responsible for -and co-located with -key Niobrara 

architectural and facies trends, thermal maturity patterns, and hydrocarbon accumulations. 
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Stratigraphic Complexity of the Niobrara 
(Wattenberg Field Example)

NESW

Gomes and Viana (2002)

Abyssal unconformities, mounded drift, abyssal plain offshore Brazil

• Abyssal erosion driven by 
the intensification of deep-
water circulation during 
glaciation periods

(e.g., Tucholke and Embley, 1984; 
Mountain and Tucholke, 1985). 

• Tectonic events and regional 
basement uplifts can also 
magnify the erosional 
capacity of bottom currents 

(Gomes and Viana, 2002).

From Deacon and McDonough 2018

Deep water analog?



Outline
• Sequence stratigraphy, isotopic ages, and chronostratigraphy

• Age-constrained isochore maps and interpretive cross sections

• Oceanographic influence vs tectonic influence

• Far-field tectonics and basement faulting

• Petrophysical analysis and original oil in place (OOIP) maps

• Architecture & petroleum system elements

• Conclusions
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Transgressions and Regressions
Open Ocean (WIS)

Maximum Flooding Surface

Catuneanu, 2006
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Increasing biogenic productivity
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D-J Niobrara:  yields opposite GR & ResD response

Drake and Hawkins, in press

Typical GR response at siliciclastic margin



Sequence Stratigraphic Interpretation
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Weld Co., CO
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MRS: maximum regressive surface, MFS: maximum flooding surface, SB: sequence boundary, HNR: highstand 
normal regression, FR: forced regression, LNR: lowstand normal regression, LST: lowstand systems tract, TST: 
transgressive systems tract, HST: highstand systems tract



Projected Isotopic Ages and Biostratigraphy
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Age-Constrained Third-Order Sequences
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Well Control and Preferred Type Log

Supron-UPRR 27-1
0512310188

27-8N-65W, Weld Co., CO

>2300 wells correlated across D-J Basin

RhoBGR Res Nphi Dphi

MRS

MRS

MRS

MRS

MRS

11 tops – four 3rd order sequences, plus 
sub-intervals

A Chalk

B Chalk

C Chalk

Ft Hays Ls

Kn outcrop

Kn eroded

F
ro

n
t 

R
a
n

g
e

100 miles

CO

NE

KS

WY

NE

Modified from Drake and Hawkins 2012



Isochore Controls:  Paleohighs and Basement Structures

Weimer, 1986

• Isochore thins associated with paleohighs, and 
thicks associated with paleolows (e.g., 
Weimer, 1986)

• Paleohighs align with structural trends 
(Precambrian shear zones) along Front Range
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CI =50’

100 miles

Gross Niobrara Isochore

Drake and Hawkins 2012



Sediments and Paleohighs and Paleolows

• Sediment draping
• Accumulation adjacent to paleohigh
• Bypassed sedimentation, unconformity, 

disconformity, and hardground
• No thick occurring on top of a paleohigh 

• Underlying thin caused by lack of sediment 
accumulation (bypassed sedimentation, erosion, 
channeling?)

• Sediment accumulation in accommodation space

Note that isochore maps of the blue units in a) and b) would 
be nearly identical, but: 
Thin-thick trends can have very different origins – key factors:

• Relationship to underlying architecture
• Scale and morphology of features
• Duration of features

from Drake and Hawkins, in press
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Stratigraphic thin
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• Dominantly NW-SE-oriented stratigraphic architecture
• More uniform thickness than subsequent sequences 

(note contour values):  relatively broad ramp deposition 
compared to later sequences

• No evidence of TCA
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Drake and Hawkins 2012
Dashed thin arrows mark the major stratigraphic thicks (yellow) and thins (red) with arrows 
pointing in the direction of thickening and thinning, respectively. TCA: Transcontinental Arch



~88.7 – ~85.7 Ma:  Middle Coniacian – Lower SantonianB

N

S

Second 3rd Order Sequence

2
1

Interpretive conceptual cross sectionN S

• Persistent NW-SE-oriented stratigraphic architecture
• Patterns of thicks and thins are mostly reversed: 

compensational infilling of accommodation space 
provided by previous sequence

• First broad TCA influence during Niobrara time?
• No evidence of individual paleohighs
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First 3rd order cycle

Stratigraphic thick

Stratigraphic thin

100 mi (161 km)
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N

Drake and Hawkins 2012
Solid thin arrows mark where compensational infilling has occurred, thus reversing the colors of 
the earlier features. Dashed circle marks a bisection (thin) of the dominant NW-SE trending thick

Modified from Drake and Hawkins, in press



~85.7 – ~84.6 Ma:  Lower Santonian – Upper Santonian
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Interpretive conceptual cross sectionN S

• Earlier NW-SE-oriented stratigraphic architecture 
disrupted by SW-NE-oriented architecture:  First 
significant uplifts are recorded ~86.0 – 84.6 Ma

• 3 uplifts are apparent
• Stratigraphic thicks are shifted laterally:  forced 

reorganization of depocenters
• Persistent stratigraphic thicks along flanks of TCA
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TCH: Turkey Creek High

Modified from Drake and Hawkins, in press



~84.6 Ma – ~81.7 Ma:  Upper Santonian – Lower CampanianB
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• SW-NE-oriented architecture is more pronounced - long-
lived thinning and less compensational infilling

• Major stratigraphic thins align with noted paleohighs
(i.e., Wattenberg, Morrill County, Hartville, and Turkey 
Creek highs):  long-lived paleohighs

• New stratigraphic thins emerge - possibly due to 
sequence boundary marking end of Niobrara
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S
Weaver et al., 1998

Madeira Abyssal Plain

Basement-draped pelagic sediments (B)

Lower 
Niobrara

Upper 
Niobrara

Gulf of 
Cadiz

°CChanneling:  Unconformity, bypassed 
sedimentation, mounded drift

Rebesco et al. 2014; Hernandez-Molina et al., 2014

Alternative explanations: 

Differential subsidence?  

 Salt dissolution post-dated Niobrara.

Compaction?

 Observed thickness patterns are dynamic; do not 
correlate to basin depth/morphology.

Sediment drift? 

 Unlikely that thicks would fortuitously be located 
above basement uplifts (thins) like (a), so (b) is favored

Analogous Scale?

Deep-water bottom currents:  Similar seafloor 
morphology and scale at greater depths

from Drake and Hawkins, in press



Far-Field Tectonic Events during Niobrara Time

DeCelles, 2004 Chapin, 2012

Paxton thrust

Kn
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Sevier Orogeny Laramide Orogeny

Brown, 1988
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simply

Sevier-Laramide Transition during Niobrara Time 

Regional Niobrara Isochore

• Eastward migration of forebulge and shifts 
in flexural subsidence and depozones 
through the Sevier Orogeny 

 Coniacian-Santonian Paxton thrust 
(e.g., Pang and Nummedal, 1995;  DeCelles, 2004; White et al., 

2002).

• Interaction between migrating forebulge 
(Sevier), TCA, Ancestral Rocky Mountains, 
and earliest flat-slab subduction, Laramide 
activity (?)

• All led to basement adjustments as 
reactivation along basement shear zones of 
Proterozoic origin in the WIS

 Bring anomalous geothermal gradients 
– influences maturity

 Recorded in Niobrara stratigraphic 
architecture – influences facies and oil 
accumulations

DeCelles and Giles, 1996

Backbulge 
depozone

C.I. = 50’

Approximate edge of 
Niobrara chalkiest facies 100 mi (161 km)

N

Modified from Drake and Hawkins, in press



Shear Zones and Tectonic Model for Colorado Province

From Cavosie and Selverstone, 2003

 Inherited Proterozoic 
discontinuities play a major 
role in basement structure 
through time (Sevier and 
Laramide orogenies)

Buckhorn Creek shear zone



Isostatic Gravity and Magnetic Anomaly Maps

Skin Gulch SZ

Soda Ck-Fish 
Ck SZ

Moose Mt SZ

Arkansas River 
SZ

Fawcita SZ

Jemez SZ

Buckhorn Ck SZ

Exhumed 

Shear Zones

From Sims et al., 2001 Data from Kucks (1999) Data from Bankey et al. (2002)
Modified from Drake and Hawkins, in press

Inherited Proterozoic discontinuities play a major role in basement structure through time 
(Sevier and Laramide orogenies).  Shear zones extend into the basin, align well with uplifts 
and paleohighs identified in Niobrara isochores.



Potential Fields, SW Nebraska

From Moore, 2002
MetamorphicIntrusive Intrusive

Anomalous heat flow along shear zones

Magnetic highs & 
gravity lows are 
inversely related in 
map view, and align 
with elevated 
geothermal gradients 

Magnetic highs + 
gravity lows suggest 
hot intrusive rock 
along deep fracture
networks



Complexity in Thermal Maturity Trends

100 miles

Control points 
from cuttings & 
core:  n = 237

Tmax Calc%Ro

430 0.57
435 0.68
440 0.77
445 0.86
450 0.95
455 1.04
460 1.13
465 1.22
470 1.31
475 1.40
480 1.49

<430 <0.57

≥480 ≥1.49

100 miles

CO
NE

KS

Maturity Map (Tmax/Calc%Ro)

SMU 

Geothermal 

Lab, 2004

Wattenberg 

Gas Field

100 miles

Wattenberg 

Gas Field

Heat Flow Map

Structure Contour Map (Top Kn)

Maturity is a function 
of two main factors:
• Geothermal 

anomalies
• Depth and burial 

history

Modified from Drake et al., 2013



Basin-Scale Petrophysical Analysis

A Chalk (MMRBO/Sec) B Chalk (MMRBO/Sec) C Chalk (MMRBO/Sec)

+ +

100 miles 100 miles 100 miles

Note:  does not include OM-porosity analysis of source-prone intervals

Modified from Drake et al., 2013

Objective:  reconnaissance OOIP maps
Petrophysical cut offs:  PhiA=6%, SwA=60%



Architectural Controls on Reservoir-Prone Intervals

Thins are co-located with 
hydrocarbon accumulations
• High PhiA_pay
• Mechanical concentration of 

chalk?
• But, too thin = little pay

Where Sw and maturity permit, 
PhiA_pay dominates.

Sub-interval 6

B Chalk OOIP

Sub-interval 4

C Chalk OOIP

Sub-interval 9

A Chalk OOIP

B Chalk (pay)

C Chalk (pay)

A Chalk (pay)

Sub-interval 9

Sub-interval 6

Sub-interval 4

Modified from Drake et al., 2013
Red arrows point to higher oil accumulations (above) that align with isochore thins in 
reservoir-prone subintervals (below).  Dashed yellow lines frame acceptable water saturation.



Architectural Controls on Source-Prone Intervals
C Chalk OOIP

Sub-interval 3

B Chalk OOIP

Sub-interval 5

A Chalk OOIP

Sub-interval 8

Adequate thickness, organic richness (not 
addressed here), and maturity required 
to charge adjacent (overlying and/or 
overlying) reservoir-prone sub-intervals.

B Chalk (pay)

C Chalk (pay)

A Chalk (pay)

Sub-interval 8

Sub-interval 5

Sub-interval 3

Maturity (thermal transformation) is 

critical; thickness less important.

Potentially sourced by 

Sub-intervals 5 and 8

Potentially sourced by 

Sub-intervals 3 and 5

Sub-intervals 3 and 5 are thin around 
Wattenberg, but high thermal 
transformation there.  Note thick Sub-
interval 8 along this trend.

Missing section

Greater 
Wattenberg

Modified from Drake et al., 2013
Red arrows point to isochore thicks in source-prone subintervals (below) that might play a role 
in oil charge of subintervals above.  Dashed yellow lines frame acceptable water saturation.




