The Potential of *Medicago sativa* for Microbial-Enhanced Phytoremediation of Diesel Fuel Contaminated Sites*

Michael O. Eze¹, Simon C. George¹, and Grant Hose²

Search and Discovery Article #80708 (2019)**
Posted October 21, 2019

*Adapted from oral presentation given at 2019 International Conference and Exhibition, Buenos Aires, Argentina, August 27-30, 2019
**Datapages © 2019 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/80708Eze2019

¹Department of Earth and Planetary Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia (mich4prof@yahoo.co.uk)
²Department of Biological Sciences, Macquarie University, Sydney, Australia

Abstract

Oil spillage, a major source of diesel fuel contamination, is the most persistent environmental menace resulting from oil and gas operations. Diesel spills are difficult to remediate because they have less volatile and less biodegradable characteristics compared to petrol (gasoline) spills. (Kuo et al., 2012; Silva-Castro et al., 2015). Traditional solutions for remediation such as excavation and off-site treatments are expensive and usually impractical because of the amount of soil involved.

One of the emerging strategies, categorised as “phytoremediation”, is the use of plants to extract and stabilise contaminants (Pilon-Smits and Freeman, 2006; Weyens et al., 2009). While this is an interesting strategy, the slow growth rate and low metabolic activity of natural attenuation limits its effectiveness (Azubuike et al., 2016). Thus, microbial-enhanced phytoremediation (an aspect of geomicrobiology) as a new technology is gaining growing attention.

In line with this, my research examined through a series of pot experiments the potential of *Medicago sativa* to withstand hydrocarbon toxicity while degrading diesel fuel hydrocarbons through the actions of associated plant growth-promoting rhizobacteria. The growth of *Medicago sativa* under different concentrations of diesel fuel was monitored during a 60-day period. Relative growth rate (RGR) and total biomass were calculated to understand the plant’s ability to withstand phytotoxicity. To better understand the effect of diesel fuel on microbial colonization and plant growth, scanning electron microscopy (SEM) was used to examine nodule development.

The results show that diesel fuel initially slowed the growth of *Medicago sativa*. However, the development of nodulation and its colonization by rhizobacteria significantly enhanced the plant’s growth, with relative growth rates in contaminated soils exceeding that of control within the first 30 days for 5 g/Kg and 50 days for 10 g/Kg diesel fuel concentrations. In addition, diesel fuel at both concentrations significantly enhanced the rhizosphere microbial density (as revealed by SEM micrographs) and total biomass production. This is a strong indication of the plant’s potential for microbial-mediated phytoremediation. We hope that this will eventually become the panacea for diesel fuel contaminated sites.
References Cited

Website Cited

The potential of *Medicago sativa* for microbial-enhanced phytoremediation of diesel fuel contaminated sites

Michael O. Eze, Simon C. George and Grant Hose
“The Whole is Greater than the Sum of its Parts”: Building the Biological Team for Oil Spill Remediation
Petroleum Spills – The Menace We All Face!
Petroleum Spills – The Menace We All Face!

5 years, $93 million to clean up massive North Dakota oil spill

Oil spill from Keystone Pipeline in South Dakota twice as big as first thought
• Petroleum hydrocarbons especially diesel fuel components are highly hydrophobic

• Natural attenuation exhibits slow metabolic activity

• Traditional methods of remediation are very expensive and environmentally unfriendly
What Has Been Done?

Ex situ remediation techniques at Sainte-Marie and Papineauville
https://akifer.ca/en/environmental-remediation

Dennis, 2016. NMED 2016 Strategic Plan
Remediation Techniques

• Diesel spills are less biodegradable compared to petrol spills

• Natural attenuation exhibits slow metabolic activity

• Traditional methods of remediation are very expensive and environmentally unfriendly

• Diesel fuels are phytotoxic to many plants and this limits the effectiveness of phytoremediation

Cocksfoot plants grown in 0 g, 25 g and 50 g diesel/Kg soil (Adam and Duncan, 2001)
Way Out?

Microbial-enhanced phytoremediation

To identify culturable and most effective microbial symbionts to enhance phytoremediation
Main Goal

To develop the right plant-microbe symbionts for enhanced rhizoremediation of diesel fuel contaminated sites
Research Outline

Leaching Experiment

Phytotoxicity Experiment

Project 1

Gottingen Genomics Laboratory, University of Gottingen

Gottingen Genomics Laboratory, University of Gottingen

Project 2

Microbial Genomics

Project 3

Effectiveness of PGPR-enhanced phytoremediation

Project 4

Macquarie University, Sydney, Australia
Phytotoxicity Experiment
Project 2: Results

- Diesel fuel hydrocarbons impacted on germination and growth of plant species
- Decreasing biomass production with increasing diesel fuel concentrations

Dactylis glomerata (cocksfoot grass) *Trifolium pratense* (red clover)
• Diesel fuel hydrocarbons alters C:N:H ratio leading to chlorosis (nitrogen deficiency) in the absence of nitrogen-fixing rhizobacteria

Vicia faba
Vicia faba
Vigna unguiculata
Project 2: Results

- Initial slow growth rate
- Subsequent enhanced growth rate in diesel soil (hormesis)

Medicago sativa (3 weeks) *Medicago sativa* (8 weeks) Control 5 g/kg
The log-logistic model

The classic four parameter log-logistic model:

\[f(\text{dose}) = c + \frac{d - c}{1 + \exp[b\{\log(\text{dose}) - \log(e)\}]} = c + \frac{d - c}{1 + (\text{dose}/e)^b} \]

Recall interpretation of the parameters:
- c - lower limit, d - upper limit, e - ED50, b - proportional to the slope in ED50

3-parameter log-logistic model

\[f(x; b, d, e) = \frac{d}{1 + \exp(b(\log(x) - \log(e)))} \]

Cedergreen-Ritz-Streibig model for describing hormesis

\[f(x) = c + \frac{d - c + f \exp(-1/(x^\alpha))}{1 + \exp(b(\log(x) - \log(e)))} \]

- f - rate of growth stimulation at doses close to 0

Biological Experiments

- At very high doses (concentration of contaminants), all test organisms die.
- Therefore, lower asymptote, c = 0
 - 3-parameter log-logistic model
 - Cedergreen-Ritz-Streibig CRS.4a model
Fitting Dose-Response Models

Fitting a 3-parameter log-logistic model:

```r
Plant.Biomass.LL.3 <- drm(biomass ~ conc, specie, data = Plant.Biomass, fct = LL.3())
```

Plotting the fitted model:

```r
plot(Plant.Biomass.LL.3, broken = FALSE, col=c("red", "blue", "green", "black"),
xlab="concentration(g/kg)", ylab="plant biomass(g")
```

Fitting Cedergreen-Ritz-Streibig model:

```r
Msativa.crsm1 <- drm(biomass ~ conc, data = Msativa.Biomass, fct=CRS.4a())
```

Plotting the fitted model:

```r
plot(Msativa.crsm1, broken = FALSE, type = "all",
xlab="concentration(g/kg)", ylab="plant biomass(g")
```
Models Diagnostics and Effective Doses

3-parameter log-logistic model:

- Normal Q-Q Plot

Cedergreen-Ritz-Streibig model:

- Normal Q-Q Plot

> ED(Plant.Biomass.LL.3,10)

Estimated effective doses

<table>
<thead>
<tr>
<th>Plant</th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dactylis glomerata:10</td>
<td>3.00487</td>
<td>0.46351</td>
</tr>
<tr>
<td>Festuca rubra:10</td>
<td>4.40357</td>
<td>1.61036</td>
</tr>
<tr>
<td>Glycine max:10</td>
<td>12.66799</td>
<td>2.01480</td>
</tr>
<tr>
<td>Vicia sativa:10</td>
<td>5.07367</td>
<td>1.08953</td>
</tr>
</tbody>
</table>

> ED(Msativa.crsm1,10)

Estimated effective doses

<table>
<thead>
<tr>
<th>Plant</th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>e:1:10</td>
<td>15.32999</td>
<td>1.4709</td>
</tr>
</tbody>
</table>
• Enhanced nodule development
• Enhanced colonization of the roots by plant growth-promoting rhizobacteria
• Interestingly, root tissues of *M. sativa* are undamaged by diesel fuel contamination
Summary

<table>
<thead>
<tr>
<th>COMPLETED</th>
<th>NEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diesel fuel exerted hormetic influence on Medicago sativa with enhanced biomass production, nodule development, and microbial colonization.</td>
<td>• Isolation, characterisation and culturing of microbial symbionts of Medicago sativa.</td>
</tr>
<tr>
<td></td>
<td>• Molecular analysis of degradation products.</td>
</tr>
</tbody>
</table>

Diagram:
- **Leaching Experiment** → **Phytotoxicity Experiment** → **Microbial Genomics** → **Effectiveness of PGPR-enhanced phytoremediation**
Acknowledgements

• Australian Government for the international Research Training Program (iRTP) Scholarship

• German Government for the German Academic Exchange Service (DAAD) Scholarship

Prof. Simon George
Director, MQ Marine Research Centre.

Prof. Grant Hose
Head, Freshwater Ecology and Ecotoxicology Lab.
Thank You for Listening