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Abstract 

Historic interest in the geomechanical properties of shales arose from understanding frac barriers and borehole stability. Little 

effort was focused on understanding the controls on the geomechanical properties of shales. Now that shales represent a 

plentiful source of liquid and gas hydrocarbons requiring stimulation, i.e. hydraulic fracturing, there is a renewed interest. Shales 

are differentiated from mudstones by their fissility which imparts an intrinsic mechanical anisotropy. The degree of anisotropy is 

strong and often attributed to the clay and organic content; however, the anisotropy is typically ignored, and shales are treated as 

isotropic elastic materials where required characteristic geomechanical properties are reduced to two elastic moduli, typically 

Young’s modulus and Poisson’s ratio and failure strength (UCS). Shales present formidable sampling challenges and are often 

not measured in their preserved state. Moduli measurements can be static or dynamic; logs produce dynamic measurements 

averaged over the wavelength of the logging tool. The smoothing masks the importance of highly laminated shale interfaces. 

The static measurements place stricter sample requirements in requiring length/diameter ratios greater than two. To overcome 

some of these restrictions, researchers have turned to new technologies like nanoindentation and atomic force microscopy to 

extract geomechanical properties from friable and limited sample quantities, including cuttings. However, these technologies are 

limited to measurements at ambient conditions and at modest temperatures. The problem with geomechanical properties is their 

intrinsic dependence on many independent variables such as saturation, mineralogy, organics, pore pressure, stress levels, etc. 

and in the case of shale, orientation. The wealth of data reported to date - some 260 measurements of Young’s modulus and 

Poisson’s ratios and some 417 measures of failure strength—are devoid of the required conditional information to allow trends 

and systematics to be developed. The collective data sets lack sample orientations, mineralogies and specified testing stress 
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conditions. A very small subset possesses enough details to begin to analyze cause and effect, but the numbers are too small to 

be statistically significant. However, for failure strengths reported as a function of confining pressure, there is a clear increase in 

strength with applied stress, roughly 2 MPa for each MPa increase in confining pressure. The geomechanical properties of shale 

are strongly influenced by age; the younger shales and those rich in smectite, tend to be more ductile and cause borehole 

problems and are more resistant to fracture stimulation. Many of the unconventional shale resource plays are naturally fractured, 

and these fractures are commonly mineralized. The mineralized fractures are inherently weaker than the host shale and represent 

the weakest interfaces during stimulation. To understand the geomechanical properties of shales, we need to understand the 

elasticity of the matrix, the role of anisotropy and natural fractures both filled and open. What is clearly needed going forward is 

a better and more comprehensive and consistent reporting of sample and test conditions. 
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Geomechanical Properties
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These include:

Elastic moduli (E, n, K, G)

Uniaxial compressive strength (UCS)

Failure strength (triaxial)

Brittleness

Anisotropy (e, d, g, Cij)

Creep

Fluid effects



Typical stress-strain behavior of rock:  Uniaxial tests
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Brittleness:
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Velocity anisotropy : Floyd Shale
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Why is anisotropy important?
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𝜎ℎ =
𝜈

1 − 𝜈
𝜎𝑣

Uniaxial strain: calculation of horizontal stress. These contain fracture propagation.

Isotropic formation

Anisotropic formation

𝜎ℎ =
𝐸ℎ
𝐸𝑣

𝜈𝑣
1 − 𝜈ℎ

𝜎𝑣

Sondergeld et al., 2010



Young’s modulus, E : shales
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Poisson’s Ratio, n : shales
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Brittleness and Moduli????
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http://www.higgs-palmer.com/HIGGS-PALMER/Rock_Testing.html
https://practicalmaintenance.net/?p=968

𝐵𝑟𝑖𝑡𝑡𝑙𝑒𝑛𝑒𝑠𝑠 = 100 ൗ
𝐸 − 1

8 − 1
+

𝜈 − .4

.15 − .4
2

Rickman et al., 2008

Which moduli are used in the equation for brittleness?



Brittleness: Moduli has wrong pressure dependence
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𝐵8 = 100 ൗ
𝐸 − 1
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+

𝜈 − .4

.15 − .4
2 𝑩𝟏 =

𝜺𝒆𝒍𝒂𝒔
𝜺𝒕𝒐𝒕

Holt et al., 2011

dynamic static

shale Age Porosity,% Clay, %

H Tertiary 28-46 30-85

S Cretaceous 21 47

W Tertiary 28 44



What do shales look like?
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Inorganics: quartz, clays, carbonate
Organics:  maturity
Pores (organic and inorganic)

Organics grain supporting? Organics grain shielded?



SEM images of Marcellus Shale
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Kimmeridge: Ashing of organics
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Note the preferred
alignment of organics!

Sondergeld and Rai, 2011



TOC vs Clay for 586 shales
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Shale failure strength vs confining pressure

Hedberg Conf, Houston, TX, Mar. 4, 2019

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

s
f,

 M
P

a

sconf, MPa



Multistage testing: Eagle Ford Shale
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Henao et al., 2017



Overview of Nanoindentation
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An array of 5x5 indentations on fused
silica seen under microscope
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Comparison : Eindt and Edyn
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Fitting slopes for estimating shear modulus
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Shear modulus, G, from nanoindentation
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Individual nanoindentation moduli dependence on 
orientation
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Cumulative MICP injection curve
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Computed compressibilities from MICP
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Comparison: MICP and NMR pore compressibility 
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Anisotropy vs organic maturity
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Nanoindentation measurement of creep behavior
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Creep for different materials
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Creep comparison for different materials
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Creep in shales - Wolfcamp
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Shale: Young’s modulus sensitivity to acids
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UB: Upper Bakken
MB: Middle Bakken
WC: Wolfcamp
EF: Eagle Ford
VM: Vaca Muerta

Wick, 2015



Summary
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Shales present formidable problems in recovering samples suitable for 
geomechanical testing.

Multistage testing can produce failure envelopes from a single sample.

New technologies such as nanoindentation can recover elastic moduli, creep
parameters, fluid sensitivity and an indication of anisotropy.

MICP can recover compressibility.

Why do we treat shale as geomechanically isotropic?

There are 8 different measures of brittleness and the one we use has a pressure 
dependence which is counter intuitive!  moduli ≠ brittleness



Summary
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We need better testing documentation:

Composition,
Porosity,
TOC,
Age,
Orientation,
Static/dynamic,
Static (strain rate),
Test pressure/temperature,
Saturation (fluid, dry?),
Drained/undrained
Preserved?
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