Improving Burial and Thermal History Modeling Based on Geochemistry and Progressive Clay Mineralogical Transformation in Devonian Shales - Examples from the Duvernay and Muskwa Formations in Western Canada*

Raphael Wust¹ and Sam Tu¹

Search and Discovery Article #51582 (2019)**
Posted July 15, 2019

*Adapted from oral presentation given at 2019 AAPG Annual Convention and Exhibition, San Antonio, Texas, May 19-22, 2019
**Datapages © 2019 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/51582Wust2019

¹AGAT Laboratories, Calgary, Canada (wust@agatlabs.com)

Abstract

The Muskwa and Duvernay formations are contemporaneously deposited stratigraphic units of the Late Devonian (Frasnian) in the Western Canadian Sedimentary Basin. Both units are composed of organic-rich and fine-grained sediments deposited along the western shelf of the North American Craton within adjacent basins, north (Muskwa) and south (Duvernay) of the Peace River Arch. A new dataset of mostly cuttings samples from >1400 wells across the two formations has been established that contains both geochemical and mineralogical details. Regional mapping of total organic content, thermal maturity and mineralogical compositions reveals details of sediment origin, transport and diagenetic alterations. In addition, clay mineralogy of selected wells illustrates a progressive clay mineral structural transformation associated with burial depth.

In the Muskwa Formation, smectitic clays are common in shales in the northeastern part of the basin buried to ~900 m (~3000 ft) depth, but are absent in rocks at ~1300 m (~4300 ft) depth where mixed-layer smectite-illite clay minerals are present. In rocks further west at >1600 m (>5200 ft) depth, mixed layer clay minerals are absent and only illite with high crystallinity is observed. Organic geochemical data of the same samples illustrate that thermal maturity also increases towards the west but depth/TMax details show that maturity is not only linked to burial depth but also to underlying basement residual heat flow. In the Duvernay Formation, burial depths are >1200 m (~4000 ft) and therefore both thermal maturity and clay mineral structures are different than in the Muskwa. Clay mineral analysis in these rocks illustrates the absence of smectites and the dominance of thin illite/poorly structured illite without swelling capacity. Geochemical analysis shows a complex thermal maturity of the organic matter with immature material (Tmax <430° C) in the shallow (~1400-2400 m, 4500-7800 ft depth) eastern part of the basin and high maturity (Tmax >470° C) along the deeper (>3300 m, 11,000 ft) western deformation front.

This presentation provides insights into regional geochemical and mineralogical changes across both the Muskwa and Duvernay formations and provides details of clay mineralogical structural changes (XRD) and organic thermal maturity (Tmax, TOC). Clay mineralogy in both basins allows interpretations about possible original detrital influx, paleo-ocean currents and paleo-topographic reliefs. Maturity trends and clay mineral transformation at local and regional scales provide specific basin model parameters and thermal maturity information associated with
both local basement heat flow and regional burial depth. The data improved both burial and diagenetic parameters and thus the resulting burial models.
Improving burial and thermal history modeling based on geochemistry and progressive clay mineralogical transformation in Devonian shales. Examples from the Duvernay and Muskwa Formations in Western Canada

Raphael Wust, PhD, PGeo and Sam Tu
AGAT Laboratories, 621-37th Ave NE, Calgary, AB, T2E 2M1, Calgary, AB, Canada
wust@agatlabs.com

Per Kent Pedersen, PhD, PGeo
Department of Geoscience University of Calgary, Calgary, AB, Canada
pkpeders@ucalgary.ca
The Muskwa and Duvernay Formations: Maturity vs Quartz and Clay Distribution

Depth in m

Quartz

TMax

Total Clays

Illite/Mica
Paleodepositional settings of the Devonian Shale Formations in the Western Canada Sedimentary Basin (Duvernay, Muskwa)

Muskwa and Duvernay Clay Mineralogy, Structures, Distribution and Diagenesis

Discussion and Conclusions
Upper Devonian W Canada

360 Ma

Volcanic arc

Muskwa
Duvernay
Bakken
Utica
Woodford
Barnett
Pre-Pangea

Blakey, http://www2.nau.edu/rcb7/namD360.jpg
Duvernay Depositional Overview

Galvis-Portilla and Pedersen (2019)

Caplan and Bustin, 2001
Duvernay Depositional Overview

- Active volcanoes
- Restricted basin circulation
- Volcanic arc
- Inactive volcanoes
- Upwelling
- Grossmont Shelf
- Muskwa
- PRA
- Duvernay
- East Shale Basin
- Eastern Shelf

Wust et al., 2015
Provenance Controls of Clay Minerals

Illite: areas of minimal chemical weathering

Smectites: areas of high volcanic influx and chemical weathering

Chlorite: dominates in high lat. zones with high mechanical weathering

Kaolinite: dominates in low lat. zones with intense chemical weathering (humid/tropical)

Fagel, 2007. Clay minerals, deep circulation and climate
Duvernay Depositional Overview

- Muskwa
- Grossmont Shelf
- Surface water circulation
- Restricted basin circulation
- PRA
- Active volcanoes
- Upwelling
- Volcanic arc
- Barrier complex
- Reefal structures

- Saskatchewan
- Eastern Shelf
- Wust et al, 2015

- British Columbia
- Alberta
The Muskwa and Duvernay Formations: Depth and Quartz Distribution
Swelling Clays in Muskwa and Duvernay Basin

- Only NE corner of Muskwa Basin contains up to 15% of smectites.
- Smectite content decreases towards S and SW.
Smectite to Illite transformation

Mixed-layer clays (I/S)

2:1 layer

1:1 layer

The illitization process occurs as a progressive replacement of expandable layers by layers with illitic behavior, in a single illite-smectite phase.

Clay Mineralogy - Structures

- **Kaolin** ($\text{Al}_2\text{Si}_2\text{O}_5[\text{OH}]_4$) (kaolinite, dickite, halloysite, nacrite)

- **Smectite** dioctahedral (montmorillonite, nontronite, beidelite) and trioctahedral (saponite)

$$
(\text{Na, Ca})_{0.33}(\text{Al, Mg})_2(\text{Si}_4\text{O}_{10})(\text{OH})_2 \cdot n\text{H}_2\text{O}
$$

- **Illite-mica** ($\text{KAl}_3\text{Si}_3\text{O}_{10}[\text{OH}]_2$) (illite, vermiculite, muscovite, etc)

- **Chlorite** ($[\text{Mg, Al}]_6[\text{Si, Al}]_4\text{O}_{10}[\text{OH}]_8$) (high chemical variation, Mn, Fe, Ca, Cr, etc)
X-Ray Diffraction Pattern

Chlorite 001
14 Å

Chlorite 002
10 Å

Kaolinite 001
7.2 Å

Illite 001

Mica

Qz

Area indicating swelling capacity of clays
Mixed Layer Clay Mineral Transformations

South America

3 samples with different depths showing transformation of clay structures:
1) Illite abundance increases
2) Smectite abundance decreases
3) Swelling behavior decreases
4) Kaolinite structure increases

4500 ft, 7470 ft, 7880 ft
SEM of the Muskwa – 900-1900 m depth burial (2950-6233 ft)

15-14-113-22W5 (945 m)
15-11-110-4W6 (4110-20 ft, 1250m)
C-94-I/94-I-1 (6140 ft, 1870m)

Increased recrystallization, flakes appear more amalgamated
Muskwa 1400 m (4590 ft)

Abundant flakes, foliated fabric, mixed layer clay minerals

Duvernay 3400 m (11150 ft)

Highly crystalline clays, some clay neoformation and abundant euhedral quartz and feldspar
Clay structures Muskwa

3450 ft (1050 m)

4700 ft (1435 m)

5460 ft (1665 m)
Total Clays and Illite/Mica
Clay Structures Duvernay

Total Clays

Clay content: 25-50%

8840ft (2695m)

12545ft (3824m)

Ch 001
Ill/Mica 001
gly

Ch 002
Ill/Mica 001

Duvernay Basin
Peace River Arch
north
Total Clays

Duvernay Basin south

Clay content: 0-50%

8409ft (2563m)

10006ft (3050m)

West Shale Basin - South

Ill/Mica 001
Chlo 002
Kaol 001

gly

10006ft (3050m)

Ill/Mica 001
Kaol 001

gly

Duvernay Basin

Peace River Arch
Clay Minerals Duvernay

Duvernay Basin

Total Clays

Clay content: 0-35%

East Shale Basin

III/Mica 001

Chlo 002

Ch 001

2230

III/Mica 001
Downhole clays?

- Peace River Arch
- Duvernay Basin

Clay types:
- Illite/Mica
- Kaolinite
- Chlorite
Clay Size Fraction (<2 µm) Duvernay Formation

1) Partial peak shift of the illite, mixed-layer, microcrystalline illite peak position after glycolation. Structural changes present.

2) 002 illite peak <5.1Å implies no smectite interlayers

2) Zero shift of mixed-layer peak positions indicating no swelling capacity of the clays.

3) Slight shift of chlorite 001 peak illustrates small amounts of Fe in clay structure (i.e. Fe-chlorite).

Increasing crystallinity of illite with increasing depth!
Swelling Clays in Muskwa and Duvernay Basin

- Only NE corner of Muskwa Basin contains up to 15% of smectites.
- Smectite content decreases towards S and SW and quantification becomes difficult.
- Mixed layers present in the S part of the Muskwa Basin but crystallinity increases towards W with low to zero swelling capacity of the clays.
- Mixed layers present in the Duvernay Formation but no expandability
Illite, chlorite, kaolinite, poorly structured (microcrystalline) or disintegrated illite/mica or mixed layers and montmorillonite clay minerals are determined within rock material of the Muskwa Formation.

Total clay mineral contents are highest (>50%) in the NE part of the Muskwa Basin where burial depth is minimal.

Clay mineral transformation trends are observed and follow depth-thermal heat patterns (i.e. maturity of rock and organics).

The smectite clay minerals in the NE part of the basin infer both a source and burial control! (detritus and volcanic material during the time of deposition).
• Illite, chlorite, kaolinite clay, poorly structured (microcrystalline) or disintegrated illite/mica or mixed layers are determined.

• Total clay mineral contents are highest in the NE part of the Duvernay Basin close to the area that connected the two basins as well as locally where a close connection existed to PRA.

• Clay mineral composition trends are present and follow depth-thermal heat patterns (i.e. maturity of rock and organics).

• No smectite minerals are present throughout the Duvernay Formation (due to burial or lack of input?).
Conclusions

- Illitization and increased illite crystallinity in the Muskwa and Duvernay Formation are observed with increasing burial (and following a heat transfer gradient) from East to West.
- In the Muskwa Formation, a successive trend from smectite-rich rocks (Alberta) to rocks without smectite minerals (Horn River Basin, Liard Basin) is present which reflects burial profile.
- Clay mineral transformation associated with albite, quartz neoformation and increased clay crystallinity represent a valuable thermal history record.
- Clay mineral transformation influence other mineral neoformation which overall impact cementation, porosity and permeability (combined with organic matter maturation).

Thank You!

Cretaceous Shale outcrop – Utah (AGAT Shale Field trip)