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Abstract

The Miami Oolite (MO) of South Florida is representative of a grainstone-rich reservoir layer (high-frequency sequence) that has been
surficially karsted (eogenetic karst), and therefore may be considered an analog for subsurface examples with “high” matrix porosity-
permeability and localized touching-vug porosity. The deposit can potentially serve to illustrate heterogeneity in this type of reservoir, as
imparted by facies changes and early meteoric diagenesis.

The MO displays the preserved morphology of a fossilized ooid sand body, even though it has been subaerially exposed in a tropical climate
since its deposition during the last interglacial highstand — Marine Isotope Stage 5e. The depositional motif is one of a dip-oriented tidal bar
belt of shoals and shallow channels fronted by a strike-oriented barrier bar. The barrier bar comprises cross-stratified grainstones and locally
bioturbated grain/packstones, whereas the tidal shoals and channels are more commonly bioturbated grain/packstones. Surficial karst features
(dolines and stratiform caves) have been added during the ~120 ky of subaerial exposure.

Since the MO is the uppermost portion of the Biscayne Aquifer, a rich understanding of fluid flow through the deposit exists and sheds
valuable insight to the larger-scale permeability patterns and reservoir implications of facies and diagenetic overprint. The pore system
comprises matrix porosity (interparticle and separate vugs) and touching-vug macroporosity that is commonly ichnologically influenced
(associated with burrowed [Ophiomorpha] intervals). GPR, well, and flow-test data indicate that matrix porosity provides most of the
groundwater storage, whereas the various types of touching vug macroporosity account for the majority of flow. The dolines and shallow caves
seem to be sufficiently spaced to prevent direct connection, with the result that they are less important in terms of regional flow than the
prevailing pore system.

An important “So What” from the observations of the MO reported here is that a depositional facies (burrowed intervals) has directed early-
stage dissolution (creating touching-vug macroporosity) to produce the stratiform high-permeability zones that dominate flow at the larger



scale. Thus, a profound implication for analogous grainy, karsted reservoirs is that a fundamental understanding of depositional facies variation
remains critical for characterizing reservoir quality and performance, even in cases of substantial diagenetic overprint.
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Miami OOLITE Sand Body

« The Miami oolite is comparable to
Modern analogs from GBB in scale and
internal morphology.

« The depositional motif is one of a dip-
oriented tidal bar belt of shoals and
shallow channels fronted by a strike-
oriented, southerly long-shore current-
formed barrier bar.
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From Purkis and Harris, 2017




Depositional Facies — Cross Bedded
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Depositional Facies — Cross Bedded
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Depositional Facies — Burrowed, Relict Bedded

From Usdan, 2014



Dep05|t|onal FaC|es Burrowed

Major ichnofabrics
(burrow types)

From Cunningham et al. (2009)
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Dep05|t|onal Facies - Burrowed

Joulter C

Thalassinidean shrimp
Callianassids

Burrow system
Ophiomorpha ichnofabric

+1m +3m +5m From Purkis and Harris, 2017



Depositional Facies - Burrowed

Vertical drone view
from 100 m

(Courtesy of Juan Carlos-Laya)
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Depositional Facies -
Distributio

Schematic Cross Section
of the Miami Limestone

(-) Meter (+)

Depositional Fackes — —

&m =
. s e T s T

brycpasn  mottled

Eanz

AR EEE.

Kilometers

61 A
4 gy LG 2-2
1 Dade-19 Dade— LG 2-1 S T — LG 2-91
2 | r ‘ :
N Sea 5 B
. Level - B - 1 -
=1 Barrier bar is 60%
4 | Legend burrowed facies
1 mm Claras o Oolds (Evans, 1982)
6 I Mottied peloid-ooid Skeletal grains 4
PSIGS
] B Mottled skeletal-oolitic :‘Tr: -
8 GSIRS x| Peloids
_| B coral floatstone I:tho::l:;& o
orals lontas sp.
104 B Exposure surface
12 From Usdan, 2014




Deposited during MIS 5e at
sea-level >6m higher than
today

Subaerially exposed and

Diagenetic Modification - Timing
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Diagenetic Modification - Surficial Karst Features

A
Elevation (m)

d+ Dolines preferentially form in the
barrier bar within troughs
between linear sand ridges.

« Stratiform caves formed locally
along the edges of paleo-
channels cutting through the
barrier bar

* Preliminary interrogation
suggests these features are
widely separated, so excess
" permeability added by the
“Gherfoeaeta, 209 | Karst features is
From Harris et al, 2018 (qUe@stionable but warranted

further study.




Surficial Karst Features — GPR and LCZ

LAND SURFACE

FILL

top of indurated limestone at 6 ft

100% loss of drilling fluid
circulafion at 18 i

From Don McNeill, Pers. Comm. LCZ, but Why?



Dissolution of Burrowed Facies
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Touching Vug Macroporosity




Biscayne Aquifer — Subsurface Data Set
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Miami oolite is the uppermost
portion of the Biscayne Aquifer, a
highly transmissive unconfined
aquifer providing the bulk of
potable water for the region

More regional understanding of
fluid flow through the deposit
sheds valuable insight to our
analysis of the larger-scale
permeability patterns and
reservoir implications of facies
and diagenetic overprint

From Cunningham et al., 2009



Touching Vug Macroporosity = Por/Perm

-
X-ray CT Scan Volume Rendering
Ooid-peloid Grst-Pkst Calculated macroporosity = 50%

Vertical hydraulic conductivity = 34.6 m/s

~ 6 i
From Cunningham et al., 2009 (~ 3.5 x 10° Darcies)



Touching Vug Macroporosity is Abundant
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Touching Vug Macroporosity = High Flow
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Well and flow test data show:

« Matrix porosity provides
most of the groundwater
storage

« Various types of touching

vug macroporosity provide
the groundwater flow

From Cunningham et al., 2009
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Touching-vug macroporosity and
high-flow zones:

« Are stratiform, aerially extensive
high-permeability zones (“super k”
zones) associated with burrowed
intervals

« Not from “connected” caves and
dolines

“Measurements (geophysical, tracer, temperature) across 64
flow zones in 16 boreholes indicate that ichnogenic
macroporosity is the principal pore type in groundwater flow
zones ... only a single cavernous-sized flow zone was
identified.”

~2-5 orders of magnitude higher flow than
the "super-K” zones of Ghawar field, Saudi
Arabia



Relations between:

the depositional elements of the Miami oolite (barrier
bar, shoals-channels),

localized occurrences of dolines and stratiform caves,
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KEY FINDINGS

Particular depositional facies
V-stage dissolution (creating
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