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Abstract

Various proxies, such as stable isotopes and trace elements, are routinely used to constrain the conditions of dolomitization. Here, dolomite
stoichiometry is evaluated as a proxy for the chemistry of the dolomitizing fluid. High-temperature experiments have shown that dolomite
stoichiometry is controlled by Mg/Ca, temperature, and molarity (Na, K, Mg, Ca) of the dolomitizing fluid. Here, we evaluated systematic
changes in dolomite stoichiometry as a means to provide geologically relevant information about the dolomitizing conditions. To do this, high-
resolution stratigraphic measurements were acquired from an outcrop of the Cretaceous Upper Glen Rose Formation. In total, 292 vertical and
102 lateral samples were collected and examined at the centimeter scale using a suite of analytical tools, including powder X-ray diffraction
(XRD), stable isotope geochemistry, thin section petrography, and scanning electron microscopy.

The Upper Glen Rose is characterized by high-frequency depositional cycles that fluctuate between subtidal mud-dominated miliolid
packstones to supratidal mud-cracked dolomitic mudstone caps. High-resolution data exhibit two geochemical and mineralogical patterns
within individual depositional cycles. Regressive facies successions are associated with vertical increases in dolomite stoichiometry, percent
dolomite, and 880 values. In contrast, transgressive facies successions are associated with vertical decreases in dolomite stoichiometry, percent
dolomite, and &80 values. These patterns are consistent with a model of dolomitization whereby temporal changes in fluid chemistry (e.g.,
Mg/Ca, temperature, and molarity) reflect relative sea-level fluctuations during deposition and penecontemporaneous dolomitization. The high-
resolution XRD dataset presented here is the first of its kind and suggests that dolomite stoichiometry may provide a valuable proxy for
interpreting the chemistry of dolomitizing fluids.
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Introduction

Dolomite:
= Uncertainty in the hydrologic mechanisms responsible for dolomitization Mg:Ca
+ Temperature
Existing Proxies: £ alintty
= Stable isotopes and trace elements ._E
= Allow for multiple interpretations 'E

Dolomite Stoichiometry:
- Mg:Ca/Temperature/Salinity +
= Commonly reported metric, but its utility as proxy is not understood
= Various factors control stoichiometry. Few studies have evaluated how these factors evolve in related dolomites.
= Mg/Ca (Sibley et al., 1987; Kaczmarek and Sibley, 2011)
= Temperature (Kaczmarek and Thornton, 2017)

= Salinity (Na, K, Ca, Mg) (Cohen and Kaczmarek, 2017)
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Introduction

Objective:

= Evaluate the utility of dolomite stoichiometry as a proxy for temporal changes in the dolomitizing conditions.

Hypothesis:

= Dolomite stoichiometry is providing a record of changing dolomitizing conditions in response to changes in
relative water depth
- Mg/Ca Conceptual Interpretation of Penecontemporaneous Dolomitization

Stoichiometry (Mole % MgC0O;)| Dep. Cycle| Relative | Dolomitizing

- Tem pe rature Dolomite Abundance (%) WaterDepth | Conditions

= Salinity

Subtidal /™

Regressive Facies =
Succession

Transgressive —
Facies Succession

\ Supratidal y




Geological & Environmental Sciences I I d h t " d I o t t)
Carbonate Petrology & Characterization Lab OW O We C araC e rl Z e O O I I l I eS "

Background

Dolomite [CaMg (CO,),]

= Stoichiometry (Composition): abundance of Mg relative to Ca
= Position of the (104) peak

= Cation Ordering (Structure): arrangement of cations in the appropriate plane

= D-(101)
= D-(015)
= D-(021)
Non-Stoichiometric & Stoichiometric &
Relatively Poorly Ordered Va2 Relatively Well Ordered 10000 - E;;%)
= 1 ?Abundance < Mg Cations D-(104) —Pure Dolomite
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( Cl- <«—CO;Anions 1000 - o
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E
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Modified after Scholle and Ulmer-Scholle, 2003 CuKa anode
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Background

Stoichiometry of Natural Dolomite
» Fuchtbauer and Goldschmidt (1965)

» Stoichiometric dolomites — evaporites
= Sperber et al. (1984)
» Partially dolomitized sediments are less stoichiometric

» Lumsden and Chimahusky (1980)

» Older dolomites — more stoichiometric
= Budd (1997)
= Cenozoic island dolomites — typically more non-stoichiometric

= Ren and Jones (2017)

=
< é'g gg
= Spatial trends in dolomite stoichiometry across Grand Cayman Island - § -
vy
Dolostone Dolomitizing fluid CJwo
Complete to incomplete dolomitzation ——>  E— smﬁ:{mﬂgg%n :ocmmu
Decreasing LCD: increasing HCD ———> €—— Decreaing MgiCa witn HCD
Dacreasing SI0Chiomeally  s——————— C—— Deceasing flow rate 3 Limestone
Decreasing §°0 and "¢ ——> € DRI | 7o e
Porhery S Interior €& Periphery | '“mek (dolomc)

Ren and Jones, 2017
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Background

High-Temperature Synthesis Experiments & Dolomite Stoichiometry

= During the replacement reaction (i.e., dolomitization) stoichiometry is controlled by:
» Mg/Ca (Kaczmarek and Sibley, 2011)
» Temperature (Kaczmarek and Thornton, 2017)

= Salinity (Na, K, Ca, Mg) (Cohen and Kaczmarek, 2017) Relative Stability Prior to Recrystallization

Generalized Dolomite Reaction Curve - Kaczmarek and Sibley, 2011

- Modified after Kaczmarek and Thornton, 2017
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Key Point: Prior to recrystallization stoichiometry is recording these factors (i.e., Mg/Ca, Temp., Salinity)
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Sample Acquisition

Field Setting & Methods
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Field Setting & Methods

Powder X-Ray Diffraction:

= Dolomite Stoichiometry (Lumsden, 1979)
mole % CaCO; = [(333.33 X d — spacing (angstoms) — 911.99]
mole % MgCO; = 1 — mole % CaCOj

= Dolomite Abundance Relative to Calcite (Royse et al., 1971)

Intensityp—(104)

* 100

% Dolomite =
/0 Intensityc—(104)+ Intensityp—(104)

» Relative Cation Ordering (Goldsmith and Graf, 1958)

Intensityp—(o1s)

Cation Ordering =
g Intensityp—(110)

D-(104)
1 2.90A
TN
3 |1 Commander Sample ID |
B0
E0000
E oo
© wmd CaF, c-(104) 006 ,
o] Standard l (006) D-(015) (110) (110)
O R l l
c_f’.‘df}’?, T B e e e e L I B L e e L e . SRS L O e L s T
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Results

180 ‘Typical’ Cycle

17.0 In general agreement with Fullmer (2005); Fullmer and Lucia (2010)
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Increasing Water Depth
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Results
180 ‘Typical’ Cycle
17.0 In general agreement with Fullmer (2005); Fullmer and Lucia (2010)
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Results
18.0 ‘Typical’ CYCle

In general agreement with Fullmer (2005); Fullmer and Lucia (2010)
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Results
18.0 ‘Typical’ Cycle

17.0 In general agreement with Fullmer (2005); Fullmer and Lucia (2010)
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Results
180 : ‘Typical’ Cycle
17.0 In general agreement with Fullmer (2005); Fullmer and Lucia (2010)
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Results
18.0 .
e ' Key Point:
P — » Fluctuations in dolomite stoichiometry and abundance
15.0 B correspond to changes in facies succession that are
14.0 . . .
interpreted to represent changes in relative water depth.
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Discussion

Mechanisms for Dolomitization: .
Reflux Brine

= Hypersaline Reflux
= Evaporative Pumping
= TidalP '

ida umping “—and Salinity & / 1

/ { /
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/ 7
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£ LX) ’
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Discussion

Mechanisms for Dolomitization:
= Hypersaline Reflux

= Evaporative Pumping

= Tidal Pumping

Evaporative Pumping

S .

Key Observations:

= ~4 Mole% MgCO; shift over ~2 meters ; “redl te
= Increasing and decreasing trends in stoichiometry 5 us lnter:;ltv vagies
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E / 1
s £ II ! o L4
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- Higher temperature - Lower temp_erature 3 as ! ..,‘/ : e
- Higher salinity - Lower _saI!nlty o _ w2 ',/' g s. : _,,/
- Dolomite is less (?) stoichiometric - Dolomite is more (?) stoichiometric A A C o
- Lower percent dolomite (?) - Lower percent dolomite (?) g \\‘ °®
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Discussion
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= Hypersaline Reflux Stoichiometry (Mole % MgCO,) __ |Depositional] Relative |Dolomitizing|
u Evaporative Pum pi ng ] Dolomite Abundance (%) " Cycle |Water Dept2 .Conditioni
n i i Subtidal /| Lower:
Tidal Pum ping gv Facies ,'l “\ -Mg/Ca
! \ - Temp.
' \
i \\- Salinity
/, \\
7/ N
e \\
. . . g ® /
Evolving Physicochemical Conditions P A PR Y
S Supratidal Higher:
/ L o Facies -Mg/Ca |}
______ 7 Temp. |
;: ® .s Py - Salinity ,,"
\R !
~‘\\ s ,’
a &
: /
x\" ’ . I’I
—E ‘\\ ~~~~~ & % . X 'I
2 4.5 —:7 ) ' \‘ ’l
g o P .& \ .,' Lower:
- " ° - Subtidal i1 -Mg/Ca
§ a0 i +«—— 39.8°C ~e_ e Facies ," \ - Temp.
§ i - ,,' \\ - Salinity
i =} 4 S
= 35 _ ®, y .
/. 3‘ /s AN
I\ I/ N
.o [ o %o
\ \
Neg, § giuoaere | Higher %
2.5 - -~ # y Stpratidal | -mgica
Depositional Depositional _ Relative 4+ 44 45 46 47 48 49 50 0% 25% 50% 75% 100% \ - Temp. /
Facies Cycle Water Depth Stoichiometry Dolomite \\\ - Salinity 'II

(Mole % MgC0;) Abundance (%)



W

Geological & Environmental Sciences

Carbonate Petrology & Characterization Lab

Tidal Pumping:

= |nvoked to explain dolomitization of peritidal carbonates.

llling et al., 1965

Shinn et al., 1965
Carballo et al., 1987
Montafiez and Read, 1992
Mutti and Simo, 1994

Tidal Pumping:

= Comanche Platform:

Low relief shelf
Peritidal dominated environment
High-frequency sea-level changes

= Cretaceous:

Hot
High pCO,

Possible Source of Mg?#*

Discussion
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Conclusions

This Study Demonstrates:

Application of laboratory findings in a coherent and consistent way to examine the causes of
temporal stoichiometry variability on the Comanche Platform during the late early Cretaceous.

High-resolution record of dolomite stoichiometry and abundance in the Upper Glen Rose Formation
of central Texas.

The most commonly invoked model of dolomitization, evaporative reflux, is unable to explain the
stoichiometric variability observed within the formation.

Dolomitization may have occurred continuously as the sediments were being deposited, a scenario
that could be more common in the rock record than previously reported.

The spatial and temporal variations in dolomite stoichiometry may be a valuable new resource for
geologists to constrain the genetic origin of sedimentary dolomites.
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Similarities in Natural & Synthetic Dolomites - Growth Structures

Numerous Observations:

1. Rhombic-shaped dolomite crystals;

2. Replacement of allochems;

3. Selective replacement of fine-grained
matrix;

4. Limestone-dolomite contacts are usually
sharp and involve a decrease in the
number of dolomite crystals;

5. Completely dolomitized rocks are more
stoichiometric than partially dolomitized
rocks.

Etched surface - Nanotopography

Non-Stoichiometric Stoichiometric

Many more observations!
Petrographic and geochemical similarities suggest
both nucleate and grow in the same way

(1; 3; 4; 5) Sibley et al., 1987; (2) Bullen and Sibley, 1984,
(2) Zempolich and Baker, 1993; (3) Sibley et al., 1994

Kaczmarek and Sibley 2007; 2014
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Similarities in Natural & Synthetic Dolomites — Fabric Preservation

Scholle & Scholle (AAPG Memoir 77)

Figure 3. Artificially dolomitized coralline algae with well-preserved
skeletal structure. Scale bar = 0.025 mm.

Bullen & Sibley (1984)





