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Abstract

The stratigraphic variability of fluvial architectural elements and their internal lithological and petrophysical heterogeneity influence static connectivity
and fluid flow. To explore the impact of fluvial architecture and facies heterogeneity on reservoir performance, we evaluated well-exposed outcrops of the
Burro Canyon Formation in Rattlesnake Canyon, Colorado. Analysis of sedimentology and channel-stacking geometries of the Burro Canyon Formation
provides insight into the low net-to-gross ratio braided fluvial style during the Early Cretaceous.

We used stratigraphic measured sections, thin-section petrography, outcrop gamma-ray measurements, and UAV- (Unmanned Aerial Vehicle-) based
photogrammetry to constrain three-dimensional (3-D) geologic reservoir models of the fluvial deposits. Measured sections and thin- section analysis
capture the sedimentology and stratigraphic variability of the fluvial sandstone bodies. We used UAV-based photogrammetry and outcrop gamma-ray
measurements to classify stacking and geometry of the channel-complex systems. We used outcrop data to condition three-dimensional (3-D) geologic
(static) and dynamic reservoir models using multiple scales of heterogeneity. Large-scale heterogeneity is associated with architectural elements and their
geometries. Small-scale heterogeneity is related to sedimentary structures and internal fluvial sandstone variability.

With multi-scale heterogeneity captured in petrophysical property models, subsurface fluid flow is simulated under various conditions. Using a 5-spot
pattern, a single injector surrounded by four producing wells, both the large- and small-scale geologic models are simulated over 30 years for both black
oil and condensate gas production. Comparison of the impacts of large- and small-scale heterogeneities on reservoir fluid flow, storage capacity, and
recovery provides insight into the impacts of fluvial heterogeneity on reservoir performance.
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facies heterogeneity on reservoir performance, well-exposed outcrops of the
Cretaceous Burro Canyon Formation in Rattlesnake Canyon, Colorado, are
evaluated. Analysis of the sedimentology and channel architecture of the
Burro Canyon Formation provides insights into the low net-to-gross ratio, ‘( ‘
sandy, braided-fluvial style. The Burro Canyon Formation represents a South | A . Rattlesnake
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B) Rattlesnake Canyon study area contains
three exposed walls of Burro Canyon
Formation. Locations of measured sections
1-3 are shown. Green shaded area indicates
canyon walls imaged with a DJI Phantom 3
Drone.
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UAV-based (Unmanned Aerial Vehicle-based) photogrammetry are used to
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constrain two-dimensional (2-D) and three-dimensional (3-D) static reservoir
models of the fluvial deposits. Resulting breathrough times (BTT) and sweep
efficiency suggest subsurface performance is most effective perpendicular to
paleoflow direction in amalgamated channel sequences. Perpendicular to
paleoflow, BTT occurs 9% faster than parallel to paleoflow and sweep
efficiency is, on average, 16% greater. Sweep efficiency and BTT are greater
perpendicular to paleoflow due to greater sandstone connectivity in this
orientation, variability of preserved channels and lateral pinchouts results in
lower recovery efficiency. Reservoir heterogeneity can account for 50%
variation in BTT and lower recovery efficiency by 5% through low
petrophysical zones that trap fluids. Cemented conglomeratic facies decrease
recovery efficiency by 15%, but increase sweep efficiency and BTT by 28%
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3. What are the types and geometries
of architectural elements present?

4. What is the impact of different
scales of depositional heterogeneity
on reservoir performance?

Reservoir properties and fluids applied to create
dynamic reservoir models to be simulated through
breakthrough time

Geologic reservoir model populated with porosity and

Geolgoic (static) 2-D and 3-D models are created permeability values determbned fiom. core data

from canyon pseudo wells and constrained to
variogram data from canyon geometries
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