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Abstract 

Mineralogical composition of rocks is one of the fundamental information that is useful in different disciplines in the oil and gas industry. For 
example, geologists use mineralogical composition in provenance analysis, geophysicists build rock physics template with specific rock 
composition range, and engineers use clay proportion to determine the optimal drilling and completion parameters. Traditionally, mineralogical 
composition is estimated by 1) petrographic analysis such as point counting or infra-red spectroscopy, 2) core examination, and/or 3) well-log 
analysis such as multi-min models. The success of these methods is variable and is highly dependent on the rocks examined. Organic-rich 
mudrocks mineralogical composition is harder to identify using these traditional methods because of their inherent 1) small grain size, and 2) 
highly variable nature at different scales. X-ray diffraction can be used but it is relatively slow and expensive. Neural networks can be used but 
they require a relatively large training dataset. In this work, we present a workflow to obtain an accurate mineralogical estimation by 
integrating relatively cheap and fast to obtain x-ray fluorescence elemental data (XRF) and traditional well logs. XRF data is inverted to 
mineral proportions using constrained optimization based on the stoichiometry of the expected minerals. The relatively large dataset obtained 
from the analysis can then be used as training set to construct a neural network model with well logs as input and mineralogical proportions as 
output. Finally, mineralogical proportion is predicted with the neural network using well logs in intervals where XRF is not available. The 
workflow is validated using x-ray diffraction mineralogical data and illustrated using a real-world case study. The studied formation is the 
Shublik Formation, North Slope Alaska, where the rocks have highly variable proportions of calcite, quarts, illite, apatite and pyrite. Inverted 
mineralogy shows good correlation with independently the measured mineralogy from x-ray diffraction. Source code is provided for reuse. 
Generally, the integration of traditional analysis methods is essential to overcoming the limitations of machine learning methods in geoscience. 
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Summary
Mineralogical composition of rocks is one of the fundamental information that is useful in different disciplines in the

oil and gas industry. For example, geologists use mineralogical composition in provenance analysis, geophysicists

build rock physics template with specific rock composition range, and engineers use clay proportion to determine

the optimal drilling and completion parameters. Traditionally, mineralogical composition is estimated by 1)

petrographic analysis such as point counting or infra-red spectroscopy, 2) core examination, and/or 3) well-log

analysis such as multi-min models. The success of these methods is variable and is highly dependent on the rocks

examined. Organic-rich mudrocks mineralogical composition is harder to identify using these traditional methods

because of their inherent 1) small grain size, and 2) highly variable nature at different scales. X-ray diffraction can

be used but it is relatively slow and expensive. Neural networks can be used but they require a relatively large

training dataset. In this work, we present a workflow to obtain an accurate mineralogical estimation by integrating

relatively cheap and fast to obtain x-ray fluorescence elemental data (XRF) and traditional well logs. XRF data is

inverted to mineral proportions using constrained optimization based on the stoichiometry of the expected minerals.

The relatively large dataset obtained from the analysis can then used as training set to construct a neural network

model with well logs as input and mineralogical proportions as output. Finally, mineralogical proportion is predicted

with the neural network using well logs in intervals where XRF is not available. The workflow is validated using x-

ray diffraction mineralogical data and illustrated using a real-world case study. The studied formation is the Shublik

Formation, North Slope Alaska, where the rocks have highly variable proportions of calcite, quarts, illite, apatite and

pyrite. Inverted mineralogy shows good correlation with independently the measured mineralogy from x-ray

diffraction. Source code is provided for reuse. Generally, the integration of traditional analysis methods is essential

to overcoming the limitations of machine learning methods in geoscience.

Introduction and motivation

Approach

X-ray fluorescence measurements

Case study introduction

Results and discussion
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Mineralogical estimation of organic rich mudrocks from well logs using neural networks 

Overcoming training dataset size limitation by Integrating X-ray fluorescence elemental data

Last Creek outcrop
[Yurchenko, 2014]

Shublik Fm.

~228 ft

Fire Creek Fm.

[Houseknecht et al., 2012]

A primer on dense neural network

Elements to mineral inversion

𝐴𝑥 = 𝑏

𝐴 =
𝐴𝐶𝑎,𝐶𝑎𝑙𝑐𝑖𝑡𝑒 =

1 ∗ 40.08

100.09
= 0.400 𝐴𝐶𝑎,𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒 =

1 ∗ 40.08

184.40
= 0.2173

𝐴𝑀𝑔,𝐶𝑎𝑙𝑐𝑖𝑡𝑒 =
0 ∗ 24.31

100.09
= 0 𝐴𝑀𝑔,𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒 =

1 ∗ 24.31

184.40
= 0.1318

0.400 0.2173
0 0.1318

𝑥𝑐𝑎𝑙𝑐𝑖𝑡𝑒
𝑥𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒

=
𝑥𝐶𝑎
𝑥𝑀𝑔

Expected minerals:

Calcite: CaCO3

Dolomite: CaMg(CO3)2

Elements:

Calcium:      Ca

Magnesium: Mg

Example

Simultaneous inversion

Element-mineral matrix based on Stoichiometry  

Mineral proportions vector (unknown)

Element proportions vector (measured)

෍𝑥 = 1

0 ≤ 𝑏 ≤ 1 The Upper Triassic Shublik Formation is considered one of the main source rocks on the

North Slope, Alaska. The elemental data is obtained using a handheld x-ray fluorescence

device (Bruker Tracer). Calibration is applied to convert the x-ray fluorescence count to mass

percentage using the relationships proposed by Rowe et al (2012). In addition, x-ray

diffraction (XRD) analysis is done on a number of samples throughout the interval. XRD

results show that calcite, quartz, illite, pyrite, and apatite are significant in the analyzed

samples.

[Parrish et al., 2001]

Portable XRF devices are:

1) Fast to operate (30-60s per sample)

2) Non-destructive,

3) Require little knowledge to operate,

4) Can be automated,

5) Yield relatively accurate results if calibrated correctly.

Calibration using more accurate

measurements such as ICP-MS is used to

convert detected fluorescence to elemental

proportions.

Problem
Statistical models requires large number of data points with solution. In the

case of well logs to mineral fitting, mineralogical measurements, such as x-

ray diffraction measurements, are sparse and not enough.

Organic rich mudrock heterogeneity is observed at different scales. It is harder to

characterize this heterogeneity using traditional methods such as core description. Models

that relates well logs to mineralogy can be constructed and used for characterization.

Neural networks are NOT a black box.

Think of it as a non-linear regression fit

to input data.

They are a series of linear and non-linear

operations on input data.

The network is constructed and fitted to produce low bias and low variance.  

[Polycode., 2018]

A neural network with one hidden

layer (10 neurons) is used.

The network is tested on a separate well (blind test). The well is about 3 km apart from the first one. Good

correlation is observed between the well-log predicted and XRF-inverted mineralogy.

Parrish et al. (2001) identified four main lithofacies in the

Shublik interpreted as deposits in an upwelling zone. The

studied interval spans the Upper Triassic Fire Creek and

Shublik formations, which can be subdivided into

different members corresponding to distinct lithofacies.

[Rowe et al., 2012]

[Thermo Fisher Scientific, 2019]

[Olympus, 2019]

Six well logs are used. The

network is fitted on one well.

Dataset: 169 samples

Training: 80%

Validation: 20%

XRD for validation

Chemostratigraphy + Shale (Google scholar)

2000 – 2009: 2,610 publications/conferences/patents

2010 – 2019: 7,040 publications/conferences/patents

Elemental data is now available for most organic-rich mudrocks. Can

the already available elemental data from x-ray fluorescence be

utilized to alleviate the sparse mineralogical dataset issue?

• Sequential inversion 

• Simultaneous inversion

• Statistical learning

XRF element 
to mineral

• Statistical learning

• Multi-min models

Well logs to 
mineral

Create 

training 

dataset

Fit 

model

• Using XRF-inverted mineralogical data, we were able to train a neural network to predict mineralogy from well logs.

• The whole workflow is largely automated, but requires the guidance of the geoscientist to determine the expected minerals and

some knowledge in data science to select the best statistical methods.

• Integration of older workflows and methods with newer statistical methods is useful.

• Simultaneous inversion software, developed for this study, can freely be downloaded from the link below.

Requires knowledge of the chemical 

constituents and their formation 

Requires training data

Harder to design for 

mudrocks

2.

1.

https://github.com/StanfordRockPhysics/Madini

[de Caritat et al., 1994]

https://github.com/StanfordRockPhysics/Madini

