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Abstract

Mineralogical composition of rocks is one of the fundamental information that is useful in different disciplines in the oil and gas industry. For
example, geologists use mineralogical composition in provenance analysis, geophysicists build rock physics template with specific rock
composition range, and engineers use clay proportion to determine the optimal drilling and completion parameters. Traditionally, mineralogical
composition is estimated by 1) petrographic analysis such as point counting or infra-red spectroscopy, 2) core examination, and/or 3) well-log
analysis such as multi-min models. The success of these methods is variable and is highly dependent on the rocks examined. Organic-rich
mudrocks mineralogical composition is harder to identify using these traditional methods because of their inherent 1) small grain size, and 2)
highly variable nature at different scales. X-ray diffraction can be used but it is relatively slow and expensive. Neural networks can be used but
they require a relatively large training dataset. In this work, we present a workflow to obtain an accurate mineralogical estimation by
integrating relatively cheap and fast to obtain x-ray fluorescence elemental data (XRF) and traditional well logs. XRF data is inverted to
mineral proportions using constrained optimization based on the stoichiometry of the expected minerals. The relatively large dataset obtained
from the analysis can then be used as training set to construct a neural network model with well logs as input and mineralogical proportions as
output. Finally, mineralogical proportion is predicted with the neural network using well logs in intervals where XRF is not available. The
workflow is validated using x-ray diffraction mineralogical data and illustrated using a real-world case study. The studied formation is the
Shublik Formation, North Slope Alaska, where the rocks have highly variable proportions of calcite, quarts, illite, apatite and pyrite. Inverted
mineralogy shows good correlation with independently the measured mineralogy from x-ray diffraction. Source code is provided for reuse.
Generally, the integration of traditional analysis methods is essential to overcoming the limitations of machine learning methods in geoscience.

References Cited

de Caritat, P., J. Bloch, and I. Hutcheon, 1994, LPNORM: A linear programming normative analysis code: Computers and Geosciences, V.
20/3, p. 313-347.


mailto:Mustafa.Geoscientist@live.com

Houseknecht, D.W., W.A. Rouse, C.P. Garrity, K.J. Whidden, J.A. Dumoulin, C.J. Schenk, R.R. Charpentier, T.A. Cook, S.B. Gaswirth, M.A.
Kirschbaum, and R.M. Pollastro, 2012, Assessment of potential oil and gas resources in source rocks of the Alaska North Slope, 2012: U.S.
Geological Survey, Fact Sheet 2012-3013, 2 p.

Parrish, J.T., M.L. Droser, and D.J. Bottjer, 2001, A Triassic Upwelling Zone: The Shublik Formation, Arctic Alaska, U.S.A: Journal of
Sedimentary Research, v. 71/2, p. 272-285.

Rowe, H., N. Hughes, and K. Robinson, 2012, The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF)
in mudrock chemostratigraphy and geochemistry: Chemical Geology, v. 324-325, p. 122-131.



Mineralogical estimation of organic rich mudrocks from well logs using neural networks Mustafa AAI lbrahim  [Mustafa.Geoscientist@Outlook.com] Stanford
Tapan Mukerji ‘Mukerji@Stanford.edu]

Overcoming training dataset size limitation by Integrating X-ray fluorescence elemental data Allegra Hosford Scheirer [allegras@stanford.edu] SCHOOL OF EARTH, ENERGY

& ENVIRONMENTAL SCIENCES

Best Validation Performance is 0.0078985 at epoch 3

Summary X-ray fluorescence measurements A primer on dense neural network Results and discussion

Mineralogical composition of rocks is one of the fundamental information that is useful in different disciplines in the ﬁk’n s A Intemational Stds. Bamett 10° F —
oil and gas industry. For example, geologists use mineralogical composition in provenance analysis, geophysicists uss e +  Wood ford +  Smithwick INPUTS SYNAPSES NEURON OUTPUT - ] ] ™ Validation | ]
build rock physics template with specific rock composition range, and engineers use clay proportion to determine i [Rowe etal., 2012] | ow 2 Eagle Foud Neural networks are NOT a black box. \ \ SIX WE“ |OgS are used. The A neural network with one hidden E N Best '
the optima}l driIIing_ and comple_tion pargmeters: Traditionally, mineralogical compo_siti(_)n is estimated by 1) [ A B “re ;':n /; Think of it as a non-linear regression fit [ ] | H | ( network IS f|tted on one We“ | 10 - d =
petrographic analysis such as point counting or infra-red spectroscopy, 2) core examination, and/or 3) well-log e K o F S P _ ayer ( neuronS) IS USed. L
analysis such as multi-min models. The success of these methods is variable and is highly dependent on the rocks gg ¢ 35 oI % g = ,/3 g 3 (f/ to mput data. 3
examined. Organic-rich mudrocks mineralogical composition is harder to identify using these traditional methods i : e oo | ::# T R I R : ] Hidden Output =
because of their inherent 1) small grain size, and 2) highly variable nature at different scales. X-ray diffraction can o T T oo/‘{: T D-fL::E::“m : : : Dataset: 169 Samples Input ' T NS
be used but it is relatively slow and expensive. Neural networks can be used but they require a relatively large e 5 %ol . %Sy, .. %Py They are a series of linear and non-linear Training' 80% =
training dataset. In this work, we present a workflow to obtain an accurate mineralogical estimation by integrating 5| E o F G |H ; opera’[ions on input data. ) e =
relatively cheap and fast to obtain x-ray fluorescence elemental data (XRF) and traditional well logs. XRF data is ;! ] gs"‘ e o ¢ > § Va| |dat|0n: 20% 6 } ] |
inverted to mineral proportions using constrained optimization based on the stoichiometry of the expected minerals. g i ;sg 2 § " / I 10 0 : 5 3 4 s 6 ; o 9
The relatively large dataset obtained from the analysis can then used as training set to construct a neural network : YiNToxs | g / e s ° v s YT 0004 9 Epochs
model with well logs as input and mineralogical proportions as output. Finally, mineralogical proportion is predicted e, e e Tor s _ o _ . . _ _
with the neural network using well logs in intervals where XRF is not available. The workflow is validated using x- e LECO s L e T [Polycode., 2018] _ Density Resistivity ~ Neutron Porosity x10°Quartz Tlite Calcite Pyrite ,_%
ray diffraction mineralogical data and illustrated using a real-world case study. The studied formation is the Shublik oa: | A e 3 o K 2 |t 3 1.058 | 1.058 | XRF inverted
Formation, North Slope Alaska, where the rocks have highly variable proportions of calcite, quarts, illite, apatite and i o2 Bl v o Ee £ z X; Wi = XqWq + XoWsy + X3W3 Loso | 059 Well-log predicted
pyrite. Inverted mineralogy shows good correlation with independently the measured mineralogy from Xx-ray . £ o TR ‘E“ =1
diffraction. Source code is provided for reuse. Generally, the integration of traditional analysis methods is essential « siope oo  cioreoms | B 0@l dopciosss | T stope. ogs ~ 106/ 1067
to Overcoming the limitations of machine |earning methods in geOSCience. - [Olympus, 2019] %0 0.1/MHO.2 03 % 2 %Fea 6 % Elzal :ppms)xmf; 0 %0 "('15 (p;.:)x::s 20 Input Layer Hidden Layers Qutput Layer :—‘/ 1.061 1.061
=]
Portable XRF devices are: - : : : g 1002 10621
Intro du ction an d m OtIV ation . (3060 | Calibration  using more  accurate The network is constructed and fitted to produce low bias and low variance. 063 | 063 |
) Fast to operate (30-60s per sample) measurements such as ICP-MS is used to e . Cowbine | _ 1064 1064
T A v . igh variance igh bias ow bias, low variance 1.065 | 065 |
2) Non-destructive, convert detected fluorescence to elemental - > R I . N B I > e I = I N & S -
- - roportions y S = ¥ P y 200 400 2600 2800 3000 4000 5000 20002400 2800 20 60 100 01 02 02 04 06 0 0.1 02 03 0.2 0.4 0.6 0.8 0 02 04 0 02 04
3) Requwe ||tt|e knOWIEdge tO Operate, p p ) '_..i" - y L-_\ hy g ™ . API kg/m3 m/s m/s ohm-'m fraction fraction fraction fraction fraction fraction
,HII L 1. . . -, @
4) Can be automated, . | - . I 1
- > - > - >

5) Yield relatively accurate results if calibrated correctly. _ _ _ _
The network is tested on a separate well (blind test). The well is about 3 km apart from the first one. Good

correlation is observed between the well-log predicted and XRF-inverted mineralogy.

Elements to mineral inversion Case study introduction R

«10°Quartz Illite Calcite Pyrite Apatite
Ax — b [de Caritat et al., 1994] 0<ph <1 The Upper Triassic Shublik Formation is considered one of the main source rocks on the o2t § ' | ' | | | ;:F'_ S
— " —_— —_— . . . iverte
| North Slope, Alaska. The elemental data is obtained using a handheld x-ray fluorescence Well-log predicted
Organic rich mudrock heterogeneity is observed at different scales. It is harder to ‘ Element proportions vector (measured) device (Bruker Tracer). Calibration is applied to convert the x-ray fluorescence count to mass L0741 [ 1 &
characterize this heterogeneity using traditional methods such as core description. Models Mineral proportions vector (unknown) x =1 percentage using the relationships proposed by Rowe et al (2012). In addition, x-ray 076 T
that relates well logs to mineralogy can be constructed and used for characterization. Element-mineral matrix based on Stoichiometry diffraction (XRD) analysis is done on a number of samples throughout the interval. XRD g :
= | results show that calcite, quartz, illite, pyrite, and apatite are significant in the analyzed < 1078} 5
____________________________________________________________________________________________________ ) x®
Problem Xxampie . samples. ; 2
o ] ] ] ] : i o [Houseknecht et al., 2012] 1.08 & L
Statistical models requires large number of data points with solution. In the ' Elements: Expected minerals: i o —— PZZT:: — Ve Sw \E %
case of well logs to mineral fitting, mineralogical measurements, such as x- ' Calcium: Ca Simultaneous inversion . Calcite: CaCO, | TioN TION | T 1.082 | ©
ray diffraction measurements, are sparse and not enough. . Magnesium: Mg Dolomite: CaMg(CO,) | SRR nmmnnnmmnsmgpnnnsmmnsrnnsns L s |
! 372 ' high biologic - nonglauconitic N | 084
1 : . sandstone, . ' ' ' ' ' ' ' ) ' ' ) ' ' ' ' '
| - 1 % 40.08 1 % 40.08 ! 0.2 i/ productivity \\ coquina g . Z 0.20.40.60.8 1 0 02 04 -05 0 05 0 0.1 0.2 0.3 0 04
I — i — — ' — | o ) < Fraction Fraction Fraction Fraction Fraction
A h : ACa,Calcite — = 0.400 ACa,Dolomite — = 0.2173 ! el - \*— - — - t!*e‘—:aﬁ o glauconitic sandstone, 5
p p ro aC HOUSTONACHRONICLE \ A _ 1 0009 1 84‘4‘0 ! 2 phgsp:atjchllmestone shelly horizons, jo!
e - E o O * 2431 1 x 2431 E & —;;{;(-;;/ and phosphorite variable bioturbation 0
Elemental data is now available for most organic-rich mudrocks. Can =% : : A ., o= = () A —— — (0.13181 = [ v = - @ e et
: ! Mg,Calcite Mg,Dolomite . ! o : = 100 C I d f I k
the already available elemental data from x-ray fluorescence be | - 100.09 184.40 4 waters crganicerich [Parrish et al., 2001} 3 o OoNCIUsSIonsS an INAl remarks et v ()
g - - - - ! 1 =L — H'E Minerals Constants Minerals.csv [ Load Minerals |
utilized to alleviate the sparse mineralogical dataset issue? | % ! mudstone, finely b e — GRZ = _ _ _ _ _ o e oy Comime)
| 0.400 0.2173 Xcalcite Ca ; laminated S [pebbleshalennit  \oon - Using XRF-inverted mineralogical data, we were able to train a neural network to predict mineralogy from well logs. | == )
: : — ! < . i i i ianti i i -
Chemostratigraphy + Shale (Google scholar) : 0 01318 XDolomite X Mg | o % ;I'(?r(:] ;/vl?r(])(l)sv \I,\é(zl;keﬂi?]\,\é ;i;z::;gijg:])é :ltjgosrrelflets&hbeug Er)(;?;lgte; ttiréz Igrlrj]ledt?]r:éles of the geoscientist to determine the expected minerals and =
o . : _ _ . o o g vy : o =t
2000-2009: 2,610 publications/conferences/patents ] @ XRD for validation Parrish et al. (2001) identified four main lithofacies in the 2 R 3 «  Integration of older workflows and methods with newer statistical methods is useful. o
2010 — 2019: 7,040  publications/conferences/patents . £33 E SO AW sy PO o e CREOD o s Shublik interpreted as deposits in an upwelling zone. The . «  Simultaneous inversion software, developed for this study, can freely be downloaded from the link below. Sl
g5 s 3 Lsshienhoen sl | Lol s il Ll s L studied interval spans the Upper Triassic Fire Creek and o T F ” ?: :
Requires knowledge of the chemical Al E oo Shublik formations, which can be subdivided into |z = GitHub —
constituents and their formation - oot — different members corresponding to distinct lithofacies. " a5 Sadlerorhii Y 2 ——= '
- . __J_ T E i i . . . . . |l ExportResults J
/ = é ; yssctelill i -J- https://github.com/StanfordRockPhysics/Madini
B — 10585 . ™ . — A | =T —T—% = L . -
1 1 1 = 10590 PENN |1 — T -
Cr_ea_tte §§qu?tr1tlal inversion = > § Lot Crookoutrop — 520 {2 Lsbume Group, j; : =
1. training e Simultaneous Inversion o = —— | iy . ‘ . =T gow e
dataset Statistical learning 2 HEEEE = % % . } £ E R R e ACkn ()Wledgl nents
w - L — | 3 BEE
ReqUi ing d 3 c| E" — R ! — : —— 360 1 ~ We would like to thank the Basin and Petroleum System Modeling Group at Stanford University, Stanford Rock Physics & Borehole Geophysics Project, Stanford Center for Earth Resources Forecasting,
equires training data @ S z _ of Y Wi - | e PSSO v RO B and Saudi Aramco for their financial support and valuables discussions. We would also like to thank the Dean of School of Earth, Energy, and Environmental Sciences at Stanford University, Prof. Steve
= = e ] . N o Tk i | ) E BN : 5 Graham, for funding. Finally, we would like to thank Golden Software for providing their software for use.
Fit Well logsto |- Statistical learning = — : 2
model mineral Multi-min models D| E yueee ) ) ' > 1 _ R f
| [ | el eferences
= E  osas L e f b UDIK Fm. 7~ Metasedimentary de Caritat, P., J. Bloch, and I. Hutcheon, 1994, LPNORM: A linear programming normative analysis code: Computers and Geosciences, v. 20, no. 3, p. 313-347.
Harder to desian for 8 = & 4 | ~228 ft : » Houseknecht, D. W., Rouse, W. A., Garrity, C. P., Whidden, K. J., Dumoulin, J. A., Schenk, C. J., Charpentier, R. R., Cook, T. A., Gaswirth, S. B., Kirschbaum, M. A., and Pollastro, R. M., 2012, Assessment of potential oil and gas
kg S Sl . A7 Y » Granite resources in source rocks of the Alaska North Slope, 2012: U.S. Geological Survey, Fact Sheet 2012-3013, 2 p.
mudrocks 2 - 10855 A '-F‘i'fe.wCreek Fm. = ‘ % Condensed marine shale[ Hiatus or erasian  Parrish, J. T., M. L. Droser, and D. J. Bottjer, 2001, A Triassic Upwelling Zone: The Shublik Formation, Arctic Alaska, U.S.A: Journal of Sedimentary Research, v. 71, no. 2, p. 272-285.
- £ 10660 o ' ' * Rowe, H., N. Hughes, and K. Robinson, 2012, The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry: Chemical Geology, v. 324-325, p. 12-131.



https://github.com/StanfordRockPhysics/Madini

