P530+ Years — Petroleum Geochemistry: Basin Evaluation and Field Development*

Paul C. Henshaw?

Search and Discovery Article #42457 (2019)**
Posted September 30, 2019

*Adapted from poster presentation given at AAPG Hedberg Conference, The Evolution of Petroleum Systems Analysis: Changing of the Guard from Late Mature Experts
to Peak Generating Staff, Houston, Texas, United States, March 4-6, 2019
**Datapages © 2019. Serial rights given by author. For all other rights contact author directly. DOI:10.1306/42457Henshaw2019

'Retired: Chevron, PetroSkills, UC Berkeley (Drphenshaw@comcast.net)

Abstract

The role of Petroleum Geochemistry in Basin Evaluation & Field Development has changed significantly over the past 50 years. It will
continue to change as industry develops energy resources to power society for the future. It is critical to remember that we deal with a
PETROLEUM SYSTEM. To impact Value and Success, we need to understand all aspects of the five petroleum system parameters of: Source
Rock; Reservoir Rock; Seal Rock; Migration Route and Trap. As Geologists, we also need to understand the sequential timing of all these
critical parameters. We must ensure that we integrate these parameters across the Earth Science and Engineering platforms. Early exploration
focused on finding reservoirs / traps. Classic structural and stratigraphic geology drove exploration. The development of seismic and well
logging technologies utilized simple models. Many fields were discovered and developed near seeps and existing fields. Most offshore
programs were limited to stepouts. Saudi Arabia’s major discovery was made by identifying a slight dip anomaly sighted from Bahrain. As
seismic technology and sequence stratigraphic concepts were developed, more “wildcat” exploration plays were pursued with improved
mapping and modeling of geologic trends, aided by newly developing tectonic concepts. Exploration risk decreased as worldwide experience
grew. The 1960’s and early “70’s ushered in an expansion of exploration with data from the Deep Sea Drilling Project and the continued
development of plate tectonic concepts (Cox, 1969). Oceanographic ideas of source material types, accumulation, preservation and burial were
added to the “System’s” approach (Lisitzin, 1972; Degens & Ross, 1974; Tissot & Welte, 1978; Hunt, 1979). This period increased the use of
geochemistry in the spectrum of technologies, to better define the petroleum system (Katz, ed., 1994). “Early” geochemistry was used with
electric and petrophysical logs, development of models for water/rock chemistry, and isotopic measurements of oils and gases. Organic
geochemistry started making an impact not only for Production, but also Exploration as various types of oils were identified. “Biomarkers”
were identified and studied relative to various source materials and thermal alteration processes. 1970’s - 80’s the FUN begins: Computer
technologies and modeling concepts stepped in with “Super” computers. The Oil/Gas industry was a first user along with the military and
automobile industries. Seismic processing and modeling took leaps forward. However, without good geologic and geochemical data,
“Nintendo” geology and “End of Oil” hysteria drove research as well as Exploration/Production efforts, leading to poorly defined Exploration
plays. Fortunately, some research and development programs “allowed” geologists/geochemists to “Beta” test seismic modeling packages,
adding “real” rock and fluid properties to geophysical modeling programs. Satellite remote sensed data improved oceanographic circulation
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models and our understanding of global tectonics. For example, early exploration (and related geophysics) in the Gulf of Mexico was driven by
the “model” that the oil was sourced from post- Salt deposited source materials — the salt was considered a “basement”. When biomarkers
indicated that the oil was from pre-Salt sources, geophysical research shifted to developing “through/under” salt seismic techniques. Salt
“tectonic” models were improved as data from post-salt fields indicated migration of fluids up salt dome flanks and through fault systems.
Satellite images enabled identification of coastal salt and mud diapiric structures. R&D projects reexamined “old” DSDP cores, core data and
maps to identify “new” offshore/deep water plays. Today: Computer research and development experienced a dilemma seen by geochemists in
the 1970 - 80’s — “the study of petroleum is too complicated...too many variables!” Exploration and Production groups have tried to deal with
“BIG DATA” for decades. We were early adopters of Cray and other Super computers, now we need to drive new developments in computing
technologies. Automated SCADA systems and power micro-grids are being tested to continuously monitor fields for fluid production, pump
efficiencies, power grid usage, etc. The key is to use the data in real time for continuous optimization: increased efficiency, lower operating
costs, and improved reservoir drainage. New procedures are being developed for drilling and oilfield production monitoring including fluid
DNA analyses to optimize well placement and completions, and Frac patterns. Continuous, “real-time” seismic networks are “listening” to well
operations and micro-seismic responses. Measurement while drilling capabilities and logging tools are improving. EOR concepts also are
improving. To add value, these technologies must be incorporated into dynamic reservoir/production models. The old days of using static
models with infrequent updating are over. We must move toward real time, inline, geochemical analyses and monitoring to improve reservoir
production optimization. Identifying changing fluid flow patterns in the reservoir can lead to significant improvement in optimization. It also
must lead to increased value through volume/quality of hydrocarbons produced. We need to increase our fundamental understanding of
reservoir compartmentalization, fluid flow, and changes in rock/fluid properties. We need to build “intelligent” systems that will improve
company performance and stay away from Nintendo geology! There is still a strong future for Oil & Gas Exploration and Production
technology development: conventional, unconventional, or alternative energy.
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The role of Petroleum Geochemistry in Basin Evaluation &
Field Development has changed significantly over the past 50
years. It will continue to change as industry develops energy
resources to power society for the future. It is critical to
remember that we deal with a PETROLEUM SYSTEM. To
Impact Value and Success, we need to understand all aspects
of the five petroleum system parameters of. Source Rock;
Reservoir Rock; Seal Rock; Migration Route and Trap. As
Geologists, we also need to understand the sequential timing
of all these critical parameters. We must ensure that we
Integrate these parameters across the Earth Science and
Engineering platforms.



Geochemistry across the Petroleum Value Chain
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Petroleum Geochemistry — Source to Oil & Gas

* Oil Composition: Pre-1960’s
— Saturated Hydrocarbons: Straight Chain, Branched & Cyclic Paraffins
— Aromatic Hydrocarbons
— Resins: Nitrogen, Sulfur & Oxygen (NSO)-Containing Hydrocarbons
— Asphaltenes

« Oil Analysis by Chromatography — pre-1960’s

 How Oil Composition and Properties Are Affected by: 1960’s-Present
— Source Rock Type
— Thermal Maturity Levels
— Petroleum Alteration Occurring in Reservoirs (e.g., Biodegradation)

« Biomarkers — Fossil Compounds dissolved in petroleum: 1970’s - Present
— Source Rock Type and Age (Oil Correlation to Source)
— Thermal Maturity (Extent of Oil and Gas Generation)
— Oil Biodegradation (Formation of Heavy QOils in Reservoirs)

« Diamondoids: Nanodiamonds that survive metagenesis: 1980’s to present

« DNA: Deoxyribonucleic Acid — Genetic compound (bacterial): 2014 to
present

EPS - 111, RM Carlson, PC Henshaw



Petroleum Formation is a Series of
(Organic-Geo-) Chemical Reactions

Diagenesis

Ancient === Kerogen |
Biological Solid Organic
Material Matter from which
Petroleum is
Generated

Source Rock & Oil
Characterization for
compound classes,

biomarkers, etc.
« GC
« GC-MS
* Infra-red, etc.

EPS-111, RM Carlson

Catagenesis

Metagenesis

Bitumen ﬂ Carbon + CH4
Un-expelled Oil Residue :
(Extractable) (Low Hydrogen
in Source Rock Content)

Oil
Expelled from
Source rock

—

+ Carbon
Residue

Gas
Early: CO, CH,



SEDIMENTARY DEPOSITIONAL SYSTEMS
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Atlantic — 20 Myrs + of Anoxia _
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Figure 5. Paleogeographic maps of the Cretaceous breakup of Africa and South America, showing the approximate location of the Gulf of Guinea and the Walvis
Ridge. Modified from Tissot and others {1980).
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Geochemistry & Mineralogy can impact fluid flow and reservoir continuity




Pay “Continuity” Changes With Increased Data
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Oil Peak height Ratios to assist in Zonal Variations
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Source Rock for Petroleum — Core Data
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Petroleum System Processes
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Inorganic and Organic

Exploration Geochemistry: Ml to'ogy

Characterizing the type, history and origin of petroleum
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Identification of Compartmentalization

Early Indicators Integration of Several of
« 3-D Seismic these ‘tools’ usually
* RFT/MDT Data required for confirmation

Oil / Water Geochemistry
— GC Fingerprinting / DNA (?)
— Oil Maturity Indexing
— Water Analyses

PVT Data
Well Tests

List partially derived from SPE 30533, “A Toolkit for Early Identification of
Reservoir Compartmentalization”, Smalley, et.al. (1995)



. _ Geochemistry of Hydrocarbons,
Production Geochemistry: |Fluid Flow, Sedimentology

Correlation of hydrocarbon types to define reservoir connectivity
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Oil Chromatography Fingerprints
Help Define Reservoir Zones
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It is all about reading the rocks & fluids

R — = Lot’s of Tools “measure”
- U ol0 ole . .
properties downhole and in
labs:

* Physical properties:
resistivity, density, fluid
saturations

* Rock properties: type,

porosity, sonic velocities,

organic matter maturity,
diagenesis/cementation
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Log Data: Measured vs Calculated (using “Models”)
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Basin Modeling Workflow — IncludeiGeochem
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Weight % Sulfur

 Consistent with a similar source for the oils and varying degrees of biodegradation
« Variations within fields show impact of multiple processes. Carlson et al, 1998

Henshaw et al, JPT - 1998
DOC ID PCH - UCB - E&PS 4-08



Well Bore Track with Seismic Data
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Petroleum System Elements with Time

BC-20 Area - Petroleum System Events Chart
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Run the Model — Semi Quantitative -

From possible Source Rock areas

| How much oil is there?




Reservoir Characterization -
Dynamic Process

 Requires continual updating and upgrading due
to:
— Data becoming available only in a piecemeal manner

— Data applicability and reliability is often uncertain and
Improves with time

— Rock & Fluid properties may vary with time
— Better interpretation techniques become available
— Newer insights are gained with time

— Unanticipated problems surface during the
productive life requiring a different/fresh look

Henshaw — EPS111



Monitoring Oil Composition through Time -

4D Monitoring
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Oil Composition Data in Reservoir
Simulation 3-Dimensional Grid

7 Wells shown in 3
dimensions

3 projections are shown
through the reservoir model
1 geologic horizon

*1 W-E vertical

*1 N-S vertical

Oil samples were extracted
from core at multiple
depths - spheres

Colors of spheres indicates
oil composition factor

White, Red and Green areas
indicate different reservoir
zones - created from
statistical analysis of oil
data
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Well Bore Track with Rock “Properties™ - Geology
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data sources

IVEeIrSe

We may have d

v

=
£
SN’
=
S
=
w
o
&

NN
Mgﬁﬂf// _.; |
A

iy

with PSDM

Jef Caers, Stanford

GRA - EPS 111



Channel System Boolean Models

—

Choose lengths and sinuositys
from statistical distributions
obtained from analogues

Difficult to constrain to data —
Geochem can help constrain models
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Not Written in Stone, AAPG Explorer, 2018

Plate tectonics at 50
February 2018 Keith James

The Plate Tectonic paradigm — “the unifying
theory of geology” — has just turned 50.

One objective, to model paleoclimate and thence source rock
presence, requires knowledge of ocean currents. Mid-
Jurassic/Miocene shallow-water deposits and subaerially
weathered rocks, now 1 — 7 kilometers deep, in Deep Sea
Drilling Project sites in the Atlantic, Indian and Pacific Oceans
must have been influenced by these, but reconstructions do
not show them. Those large subsided continental masses need
to be taken into account as well.
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