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Abstract

Bedrock groundwater systems in mountains are critical water resources, yet they are poorly understood. In part, this is due to sparse data on
complex flowpaths. Mountainous environments are typically characterized by fractured and variably weathered bedrock with complex pore
networks. The extent to which flow is partitioned between fractures in the bedrock, and rock matrix remains challenging to assess
quantitatively. In this study, we use novel quantitative micro Computed Tomography (CT) to characterize the density, porosity, pore structure,
and permeability of fractured argillaceous bedrock core from a forested montane hydrologic monitoring site.

By CT scanning a rock core, digital representations of the sample can be captured, and used to create digital rock physics models. One
advantage of rock physics models is the ability to work with intact scanned cores. Most lab equipment for porosity and permeability testing
cannot handle rocks larger than a few centimeters. By working with larger rock physics models, we are more likely to capture a representative
elementary volume (REV) to be used in our analysis.

Density models can be created by scanning alongside objects of known density. Using these objects for calibration, CT attenuation can be
converted to density at each voxel (3D pixel). A porosity model can be created by using an inverse relationship to density for each voxel.
Effective medium theory is then used to create a velocity model of the rock. We used a finite difference method simulation to solve the wave
equation at each node through the model of the fractured sample and computed wave-speeds. Fluid flow can also be simulated through the CT
based models. Fluid flow modeling can quantify water flux partitioning between fractures and the rock matrix.

We compare the digital rock physics models to laboratory measurements of density, velocity, porosity, and pore structure. Pore information has
been evaluated with helium pycnometry, mercury intrusion porosimetry, and laboratory nuclear magnetic resonance. Fluid flow simulations,
porosity, and velocity data are compared to field scale measurements at our intensive monitoring site to improve understanding of fluid
pathways at the hillslope and catchment scale.
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https://www.mdandb.com/difference-between-rock-drilling-companies

Goal: Characterise and quantify flow paths

e Where are unit boundaries? .
e How porous is each unit? |
e How permeable is each unit?
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Surface topography does not necessarily tell us much about flow paths

Hahm, W. J., Rempe, D. M., Dralle, D. N., Dawson, T. E., Lovill, S. M., g _ <
Bryk, A. B., & Dietrich, W. E. 2019. Water Resources Research. ) rzq ER
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Tools: e
e Boreholes F_

e Sample collection
e Sledge hammer seismic survey
 Characterise seismic velocity for each unit
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if we don’t have a data rich environment?
(i.e. most environments?)

e P velocity >5 km/s is probably not porous at all
e P velocity <500 m/s is probably very porous
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What happens if we don’t have a data rich environment?
(i.e. most environments?)

e P velocity >5 km/s is probably not porous at all
e P velocity <500 m/s is probably very porous
-+ Andforin between....?
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Ground truth:

A piece of unweathered shale bedrock.
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Ground truth: Laboratory testing

Density: 2 653 kg/m3
Porosity: 1.01%
Ultrasonic Velocity: V, =3 800 m/s

Quartz lllite Plagioclase Chlorite Carbonate Kaolinite Smectite other

Percentage% 25.1 14.7 24.4 20.3 1.3 1.9 10.0 ~2




' sawed it wet it would crumble.

It had to be cut with a saw dry, and slow. It created a

lot of dust. s
To grind the sample, it had to be done with kerosene

as water would cause the clay to swell and the

sample would crumble.

Percer

Total laboratory time for prep and testing: ~4 hours
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Relationship Between CT Number
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CT Number « 10"

Lab measured density: 2 653 kg/m?>
CT estimated density: 2 608 kg/m3

Density, (Kg/m®)
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Pframe — Pvoxel
(l) =

Prrame — Pfluid

¢ = porosity
Pframe = frame density

Pvoxer = Voxel density
Pfiuia = pore density

Savre, and Burke. SPWLA 4th Annual Logging Symposium. 1963.
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(l) =
Pfrrame — Pfluid o
5
¢ = porosity ;

Pframe = frame density

Pvoxer = Voxel density
Pfiuia = pore density

Savre, and Burke. SPWLA 4th Annual Logging Symposium. 1963.
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Density, (Kg/m~) Porosity (%)
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Quartz lllite Plagioclase Chlorite Carbonate Kaolinite Smectite other

Percentage% 25.1 14.7 24.4 20.3 1.3 1.9 10.0 ~2

Effective Medium Theories for Multicomponent
Poroelastic Composites

James G. Berryman'

Abstract: It is demonstrated that effective medium theories for poroelastic composites such as rocks can be formulated easily by analogy
to well-established methods used for elastic composites. An identity analogous to Eshelby’s classic result has been derived previously for
use in composites containing arbitrary ellipsoidal-shaped inclusions. This result is the starting point for new methods of estimation,
including generalizations of the coherent potential approximation, ditferential effective medium theory, and two explicit schemes. Results
are presented for estimating drained shear and bulk modulus, the Biot-Willis parameter, and Skempton’s coefficient. Three of the methods
considered appear to be quite reliable estimators, while one of the explicit schemes is found to have some undesirable characteristics.
Furthermore, the results obtained show that the actual microstructure should be taken carefully into account when trying to decide which
of these methods to apply in a given situation.

DOk 10,1061/ ASCENT33-9399(2006)132:5(519)

CE Database subject headings: Composite materials; Poroelasticity; Micromechanics; Porous media.

Berryman, James G. Engineering Mechanics. 2006 o
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Quartz lllite Plagioclase Chlorite Carbonate Kaolinite Smectite other

Percentage% 25.1 14.7 24.4 20.3 1.3 1.9 10.0 ~2

Effective Medium Theories for Multicomponent
Poroelastic Cnmposites

. Effective bulk modulus with no porosity : 45.6 GPa

to m.ll

«» Fffective shear modulus with no por051ty 28.4 GPa

are Pl'EﬁEl]lEil LOE ESLHNANNE QUaliedd sOeAr dnd MUK INCOmus, e oioi—=wins paraimerer, and SEEmpio s cocinuient. 1nres o e e imas
considered appear to be quite reliable estimators, while one of the explicit schemes is found to have some undesirable characteristics
Furthermore, the results obtained show that the actual microstructure should be taken carefully into account when trying to decide whic h
of these methods to apply in a given situation.

DO 10,1061/ ASCENT33-93992006)132:5(519)

CE Database subject headings: Composite materials, Poroelasticity; Micromechanics; Porous media.

Berryman, James G. Engineering Mechanics. 2006
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Elastic Modulus for Each Voxel, when Porosity
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P Wave Velocity (m/s)

2657

3000

Vp = P wave velocity
K = bulk modulus

1 = shear modulus

p = density 0
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Finite Difference Method Solver:Sofi3D
Order in space: 8th

Order in time: 2"d

Source: 1Mhz Ricker

Bohlen, Thomas. "Parallel 3-D viscoelastic finite difference seismic modelling.” Computers & Geosciences 28.8 (2002): 887-899.
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Don’t Rock Physics models already explain this?
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Don’t Rock Physics models already explain this?

* Notin the way we need them to...

 Consider adding porosity in a fracture, versus
distributing it equally.

Quartz lllite Plagioclase Chlorite Carbonate Kaolinite Smectite other

Percentage% 25.1 14.7 24.4 20.3 1.3 1.9 10.0 ~2
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All increases in porosity is randomly dlstrlbuted

Single-voxel-shaped pores added
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All increases in porosity is distributed near fracture planes
Single-voxel-shaped pores added "
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P wave velocity as a function of porosity
with several pore types
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P wave velocity as a function of porosity
with several pore types
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P wave Velocity (m/s)
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Discussion:
 Better understanding of pore types
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Discussion:
1e¢ Better understanding of pore types
, ¢ Different shaped pores possible
. Other ways to model fractures also possible
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Discussion:

e Better understanding of pore types
o Different shaped pores possible
e Other ways to model fractures also possible

e Same type of modelmg can be used with Re5|st|V|ty
x ‘_..1 — #"ﬁﬁf

500 3162.0
5132 - lL'”f" 1? ol 2154.0 ,l f
ine
o | ' 488 0
4764 ® Well, bedrock depth : 1468.0 '-' .-:'E '|-ij !'r i F
| 4308 .: - 1000.0 Bbsu "- ]
20 a5 15 - 661.0 T
u b . 4640 =
= L 3661 L 6 464.0 g
E @ 0 E
= L 3203 A 5 ’ £
5 s - 3 0=
= 2925 = 3 =
(1] [¥] (8]} =
> AEET [=] 5
o 2557 5 ] Q - 1 L innp B
i \_} — 7]
218 L5 4
L 1821 ] 460
194 - 32.0
TUHE 220
718 15.0
350 . : 10,0
0 ) 400
D Dist m

6000 7500
Figure 12. Line 2 surveys at Rivendell hillslope with Lines 10 and 11 intersecting. Seismic CT Number



AP
Discussion:
e Better understanding of pore types
o Different shaped pores possible

e Other ways to model fractures also possible

@ ¢ |dentical modeling can be used with Resistivity

E

e Testing this many physical rocks would take MONTHS;
however, a few additional samples would be helpful.
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— ! Conclusion
-  Solving wave velocity from digital rocks is a big step.
.- * The next step is using digital rock physics to help us

understand data poor environments, by creating

new data from base case information.

This type of modelling can extend with many types

of geophysical methods. A

Mountainous environments are complex 3D systems
that may never be fully mapped with physical S

samples.
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