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Abstract

The main purpose of this study is to determine a shear velocity prediction scheme for deep offshore Niger Delta accurate enough for use in
wellbore stability. There are few wells in the area that contain measured shear velocity data and these wells are located close to each other. Six
(6) wells are utilized. The available logs were analyzed using Greenberg and Castagna and Mudrock line equations.

The aim is to determine how reliable the Greenberg and Castagna equation is in estimating shear velocity and to determine the locally
calibration coefficients of the equation to use for similar lithologies in the Niger Delta. The results from the Greenberg and Castagna equation
was further compared to the Mudrock line equation. The difference in the results further establish the importance of having locally calibrated
coefficients when using the Greenberg and Castagna equation to estimate shear velocity.

Introduction

The Greenberg - Castagna method was used to predict the Vs in the study area using a control well with known sand and shale coefficients.
New lithologies i.e. sand and shale (illite, kaolinite, muscovite mica, and chlorite) coefficient were derived using the data from the wells in the
study area. This new calibration shows that the locally calibrated coefficient gave a better result in estimating shear velocity than the widely
accepted Greenberg - Castagna coefficient. The local sand and shale trends are also closer than the controlled sand and shale trend. Note: The
coefficients from Greenberg - Castagna equation were derived from a global data set including Gulf of Mexico samples.

The linear relationship between Vp and Vs used by Greenberg and Castagna is:

Vs =A0+ AlVp for sand (1)
Vs = B0 + B1Vp for shale (2)
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where A0=-0.85588, A1=0.80416, B0=-0.86735, and B1=0.76969.

Mudrock line equation is:
Vp=1.16Vs +1.36
Where Vp and Vs refers to P-wave velocity and S-wave velocity.

The wells in the study area are located in the range of 2,953 ft — 3,937 ft water depth and are referred to as Well #1, Well #2, Well #3, Well #4,
Well #5, and Well #6. Crossplots of the Vp-Vs from Well #4 shows a linear relationship with some data points of the linear trend relationship.
However, some data points outside the linear trend are due to the presence of hydrocarbon as shown in Figure 1.

Method

Petrophysical analysis was carried out in the study area and a robust lithologic model was developed. This model captures the volume of key
minerals (quartz, illite, kaolinite, muscovite mica, and chlorite) in the study area. The Greenberg - Castagna Vp-Vs approach is lithology
dependent.

A Gassmann fluid substitution of 100% brine saturation was performed on the key logs (Vp, Vs, density). Fluid properties were computed as
this is a key component for fluid substitution (Figure 2, Figure 2a, and Figure 2b). Elastic properties (Poisson’s Ratio, Young’s Modulus, Bulk
Modulus, and Vp/Vs) were also computed. The model was calibrated by adapting the constant/linear and quadratic factors of the Greenberg -
Castagna equation for each of the minerals. Zones were defined for shales, hydrocarbon bearing sands, and wet sands. This was done to
improve the calibration of the coefficient for each of the defined rock units/zones. These calibrated models were applied to other wells
excluded from the calibration model to verify the accuracy of the prediction.

Results

The results of the study show the importance of having a locally calibrated coefficient for the Greenberg — Castagna equation (Figure 3). The
results show a good match between the measured Vs and the modeled Vs (Figure 4, Figure 5, and Figure 6).

Discussion

From the analysis a good trend was observed between the measured Vs and the modeled Vs (Eigure 7). This is an indication that the coefficient
that was generated fit the shear velocity trend for computation of the Greenberg — Castagna equation locally i.e. Niger Delta. In addition, the
Mudrock line equation was also used to compute shear velocity and this was compared to the result of the study. The result of the Mudrock line
indicates an over estimation of the shear velocity as seen in Figure 8.



Conclusions

The locally calibrated coefficient shows a close match for Vs compared to the measured Vs. Even though these values are localized, they
produce better Vs estimates in a test well. Shear slowness is a key component of the mechanical earth modeling because it is an important input
when computing elastic parameters such as Young’s Modulus and Poisson’s Ratio. An over estimation or under estimation of shear slowness
will have a huge impact on the final wellbore stability model.
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Figure 1. Showing crossplot of Vp — Vs relationship.
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Figure 2. Showing Gassmann fluid substitution of 100% brine.
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Figure 2a. Showing Gassmann fluid substitution of 100% brine.
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Figure 2b. Gassmann fluid substitution showing gas effect on the mineral.
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Figure 3. Calibration of the Greenberg — Castagna coefficient.
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Figure 4. Crossplot of Vs modeled vs Vs measured for well #1.
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Figure 5. Showing a crossplot of Vs modelled vs Vs measured for well #4.
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Figure 6. Showing application of the calibrated on Well #3. Note shows close match between the predicted DTS and measured DTS.
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Figure 7. Showing the crossplot of the measured vs predicted.
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Figure 8. Mudrock line comparison with modeled Vs.



