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Abstract 

 

Quantifying the pore systems of fine-grained reservoirs is hugely challenging due not only to their extensive textural and mineralogical 

heterogeneity but also the sub-nanometer to micrometer size of pores. Definition of the reservoir storage and flow system, which underpins 

effective production, thus requires a very detailed, quantitative understanding of the porosity system and its relationship with rock texture. This 

work focuses on the Cretaceous Eagle Ford Formation, an organic-rich marl that trends across Texas and which produces around 1 million 

barrels of oil and 4 bcf of gas per day. In order to understand the nature and evolution of the pore system, we have analysed a set of 46 samples 

from outcrops and six different wells with maturities of 0.4%, 0.8% and 1.2% Ro. XRD, transmitted and reflected light optical microscopy, 

EDX and SEM techniques have been used to reconstruct the mineralogical and textural framework in which the porosities occur. Carbonate 

contents range from 37 to 84% and TOC values from 0.5 to 7.9%.  

 

Petrographic studies show that the organic matter is mainly marine type II and that microfacies vary from finely laminated marls to 

fossiliferous limestones. The paragenesis of the samples, in particular the diagenesis of carbonate and the generation and micromigration of 

organic phases, has been determined with BSEM and SEM-EDX. MicroCT of mm-size cores, calibrated with high resolution FIB-SEM, has 

identified the occurrence and connectivity of the main textural domains (organic matter and porosity, microfossiliferous material, fine-grained 

argillaceous/carbonate matrix and pyrite), and the nature of the pore system in each domain. In the low maturity samples, the main porosity 

types are interparticle, enclosed within the argillaceous and coccolithic matrix, whereas in most of the mature samples the pores present a more 

spherical shape, suggesting that they are mainly situated within the migrated and in-situ OM. Pore systems have been characterised using a 

combination of high resolution SEM, mercury injection porosimetry and N2 and CO2 sorption. Pore sizes, calculated by analysing and 

combining data between SEM images and gas adsorption, appear to have a bimodal distribution with modes around 10-20 nm and 50-200 nm. 

Current work, using ESEM, AFM and nano-IR, is focused on understanding the chemical interaction between the fluids and pore surfaces. 

Calcite crystals simulating the Eagle Ford surfaces were aged in different oils and analysed with the AFM using functionalised tips. The 
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resulting adhesion maps were then converted in wettability patterns, that change with respect to the different oil molecules on the surfaces, as 

testified by means of nano-IR analyses. 
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The multi-technique approach

Part 1: The porosity framework
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Carbonate and OM-rich samples

0.55% 0.9% 1.2%Ro %Silicates

CarbonatesClays

XRD

TO
C

 (
%

)

0

1

2

3

4

5

6

7

8

O
C

1
O

C
2

O
C

3
IM

2
_1

IM
2

_2
IM

2
_3

IM
1

_1
IM

1
_2

O
W

1
O

W
2

G
W

1
G

W
3

G
W

4
G

W
5

H
3

A
 1

H
3

A
 2

H
3

A
 3

H
3

A
 4

H
3

A
 5

H
3

A
 6

G
W

2
G

W
6

G
W

7
G

W
8

NW SE



- Group I: immature samples

- Group II: mature samples
I
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Rock Eval data

TYPE I KEROGEN
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The OM type

Type I-II marine kerogen



Different microfacies
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The different porosity types
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The multi-technique approach

Part 2: The porosity quantification
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The pore size distribution using the MICP
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R0: 0.55% R0: 1.25%
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The pore types and connectivity in 3D: the FIB
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The multi-technique approach

Part 3: The pore surface chemistry
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It is the preference of a solid to be in contact with a fluid rather than another.

A rock (or a mineral) in a reservoir can be water-wet or oil-wet.
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The wettability at the microscale: ESEM
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The wettability at the nanoscale: CFM
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The wettability: CFM on Calcite 
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The wettability: AFM-IR 
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The samples are carbonate and OM-rich and are highly hetereogeneous.

The pores change with the increase in maturity. Pores become smaller, more circular…more OM-related.

Studies using different techniques suggest that the porosity at low maturities is mainly formed by 

interparticle matrix mesopores. 

The pore system network at high maturities is complex. Mesopores connected by smaller pore throats.

The wettability of a pore surface varies with the type of fluid (higher molecular weight = more Oil-wet 

surfaces) and with the mineralogy of the surface.

Conclusions
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