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Abstract

Sequence stratigraphic models for thick fluvial successions continue to evolve to account for controlling factors other than base-level fluctuation. For
instance, many models place a sequence boundary at the base of amalgamated channel-belt deposits that cap coarsening-upward accumulations, relating
this surface to a drop in base level. However, this surface is often characterized by features more indicative of lateral channel-belt migration under
conditions of aggradation. These successions commonly develop significantly inland of likely influence by marine shoreline fluctuations and may not
respond to eustatic base-level controls, particularly when factoring lag time for effects to propagate upstream. Additionally, these deposits are typically
found in settings of relatively continuous subsidence accompanied by high sedimentation rates, such as foreland basins, in which accommodation is
produced proximally to the source, trapping much of the sediment before it reaches a position where it can be impacted by eustatic base-level controls.
Deposits that accumulate during early phases of foreland development do not have a connection to the marine realm yet demonstrate similar patterns to
those that do. Other models suggest accommodation is produced by tectonically-induced subsidence, with filling in response to either a slowing of space
production or to simple progradation, as coarser proximal deposits accumulate over finer distal deposits. Other factors include variability in discharge
relative to sediment supply and distributive vs. contributive channel patterns. With each addition comes new terminology that, in the end, still ties
successions to “sequence boundaries,” which, by definition, are “unconformities and their correlative conformities.” Part of the complexity may arise
from applying concepts where they do not fit. One model might work for passive margins, another for foreland basins, and another for rift basins, yet
there will always be exceptions, even between one foreland basin and another or within the same basin. Sequence stratigraphy is an effective tool for
analyzing sedimentary basins, but we might be handicapping ourselves by forcing it into situations for which it was not designed. I propose it would be
more effective to refrain from all-encompassing formal labels and return to a simple descriptive terminology, such as “coarsening upward interval” and
“gradational contact” to describe and interpret thick fluvial successions.
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Abstract Sequence Stratigraphic Models Were Not Developed for Tectonically-active Basins Inclusion of Thick Fluvial Successions into Traditional Sequence Stratigraphic Models

Sequence stratigraphic models for thick fluvial successions continue to evolve to account for controlling factors other than base-level
fluctuation. For instance, many models place a sequence boundary at the base of amalgamated channel-belt deposits that cap coarsening-
upward accumulations, relating this surface to a drop in base level. However, this surface often demonstrates scouring that is no deeper than
the thickness of a single channel-fill and may show interbedding between facies above and below, suggesting the surface might, instead, be
associated with lateral channel-belt migration. Additionally, these successions commonly develop significantly inland of likely influence by
marine shoreline fluctuations and may not respond to eustatic base-level controls, particularly when factoring lag time for effects to propagate

In that coastal sediment is primarily derived from rivers that act as conduits from a source region to a basin, it is logical that changes in base level would affect the fluvial equilibrium profile, leading to episodes
dominated by vertical accretion when the rate of accommodation production is high and to lateral migration when low. Once a new profile is established, sediment bypasses the fluvial realm and is
transported toward the basin to feed coastal systems. Models relating alluvial architecture to accommodation production attempt correlation between fluvial and coastal successions of foreland basins and,
thereby, relate them to standard sequence stratigraphic models. Each assumes a constant sediment supply and shows a common theme, amalgamated sandstone sheets created by braided to meandering
rivers during periods of slow accommodation production (lowstand and late highstand) and discontinuous sheets or lenses of sandstone encased in mudstone deposited by high-aggradation meandering to
anastomosed rivers during intervals of moderate to rapid accommodation production (transgression), respectively. Terminology varies between models, as some have attempted to maintain traditional

Early Model

Early sequence stratigraphic models were derived from seismic reflector patterns and terminations for application to coastal/deep marine settings in which space increases
basinward from a landward hinge placed within the coastal plain, explicitly in response to eustatic sea-level fluctuation. Thick fluvial successions are not present in these
models due to lack of space for their formation and low preservation potential upon drops in base level. Seismic reflectors are considered to have chronostratigraphic
significance.
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For nearly three decades, sequence stratigraphic terminology has been applied to Upper Cretaceous strata from the Kaiparowits Basin based
primarily on changes in alluvial architecture as related to perceived relationships to accommodation production. More recently, controls

basinward to “correlative conformities.” As the model is based on a

minimal accommodation in proximal
regions with a steady increase basinward.

closely to, and used to refine

Fluvial deposits may appear in marginal ma-
rine sequences during lowstands, but such events

production of accommodation space and can produce similar vertical sequences
for a given locality. This diagram shows the general nature of fluvial sequences in
the northern Kaiparowits Basin and the application of the eustatic and tectonic

Hgure 10—Summary diagram illustrating the relationships between shoreface and fluvial architecture as a function

may be extensively reworked by lateral channel ¢ i
of base-level change. (A) Slow rates of base-level rise leading to base-level fall. (B) Reduced rates of base-level fall

migration, reflecting the lack of accommodation
space. This prevents floodplain aggradation.

and a change to slowly rising base level. (C) Increased rates of base-level rise. (D) Reduced rates of base-evel rise
that are approximately balanced by rates of sedimentation. From Shanley and McCabe (1991b,1993).

Fig. 7.7 Conceprual models illustrating the potential evolution of contrasting types of fluvial system in response to relanve
sea-level fall. In this example, the impact of reductions in accommodation space leads to changes m the character of the fluval
system, which may or may not mclude masion depending on the relasonship between shelf and fluvial gradients. In all cases
changes i architecture or stream type are assumed to reflect changes in accommodation space i response to relanive sea-level

global sea-level cycles. Such
cycles can be difficult to
identify in fluvial deposits of
basins in which rates and
maghnitudes of subsidence
might be greater and at
significantly different time
scales than those associated

passive-margin setting, it does not address fluvial successions that
thicken landward, such as those deposited within a foreland basin.

fluctuanons. No consideration has been given to the potennial for stream caprure or changes i upstream and mid-stream controls.
ITS, imnal transgressive surface or equivalent alluvial surface; SB, sequence boundary or equivalent alluvial surface

Shanley & McCabe (1994) models discussed in the text. Little (1995)

Additionally, the proximal space actually
experiences a reduction during base-level
falls, resulting in poor preservation
potential for fluvial successions.

related to sediment supply and discharge have been considered. Differences in interpretation as to whether the principle driving mechanism is
eustasy, tectonics, or sediment supply and discharge have led to “sequence boundaries” being placed both at the top and the bottom of the
same stratigraphic unit, with primary focus being on thick amalgamated sheet sandstone deposits, which form either the basal (lowstand) or
the capping (highstand) unit of the sequence, depending upon the boundary selection. Here, the Drip Tank Member of the Straight Cliffs
Formation is used to illustrate this discrepancy. Similar issues have been tied to the capping sandstone member of the Wahweap Formation,
also in the Kaiparowits Basin, and to the Castlegate Sandstone of the Book Cliffs region.
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Figure 2. The fluvial architectural response to changes in basin accommodation and corre-
sponding systems tracts (see text for explanation). Time 0—initial fluvial architecture; coarse-
grained, laterally discontinuous channels. Time 1—degradational systems tract; coarse-
grained fluvial sediment is deposited within incised valley margins, while preexisting
flood-plain sediments are subjected to paleosol formation or early diagenetic alteration. Time
2—transitional systems fract; increased accommodation results in decreased fluvial gradients
and aggradation of the incised valley. Time 3—aggradational systems tract; continued ac-
commodation development results in deposition of laterally discontinuous channel sandstones
and abundant fine-grained overbank sediments. Time 4—late aggradational systems tract
showing increase in channel density and amalgamation. Modified from Shanley and McCabe
(1994) and Wright and Marriott (1993).

Currie (1997)
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Published Figures Placing the Sequence boundary at the Base of the Drip Tank Member

Focus on Non-base-level Controlled (Distributive) Fluvial Systems Demonstrating Similar Depositional Patterns to Base-level Controlled Successions

The primary characteristic of thick foreland basin fluvial successions used to tie them to base-level control is a two-fold lithologic subdivision. One interval is dominated by muddier deposits that become
progressively more sand prone toward the top, as sandstone beds become coarser, more amalgamated, and thinner. The other interval forms a thick, sharp-based, multi-story, amalgamated sheet of

ional episode and resultant genetic stratigraphic sequence. Upper

Shanley and McCabe (1995) defined sequence boundaries as “regional surfaces of erosion that juxtapose amalgamated fluvial deposits over

shoreface, alluvial plain, or coal-bearing strata and reflect an abrupt basinward shift in facies tracts.” Lawton et al. followed the reasoning of | — T
Shanley and McCabe (1991, 1994, 1995), adding support from petrographic and paleocurrent congruence with underlying (John Henry T mm—— : R S PR SRR e ——
Member) and overlying (Wahweap Formation) strata.
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Modified from DeCelles and Cavazza (1999).
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Discussion and Conclusions

Sequence stratigraphy is an immensely useful tool for interpreting the depositional history of and for making regional correlations in coastal and
near coastal settings, particularly along the edges of passive margin basins; however, when applied to settings for which it was not designed, its
usefulness is much less, and it may actually lead to interpretations that are incorrect. Attempts have been made since at least as early as the 1990s
to apply sequence stratigraphic concepts and terminology to thick fluvial successions of active foreland basins. The primary motive being the
remarkable success of sequence stratigraphy in deciphering coastal systems and the fact that fluvial systems are physically connected to the coast.
It is, therefore, logical to assume each would be influenced by the same base-level controls. This has led to development of schemes and
terminology intended to show a relationship between coastal sequences and thick fluvial successions in terms of response to changes in rates and
directions of accommodation production. However, these correlations have proven to be difficult and, in some cases to not be valid for several
reasons:

1)

Sequence stratigraphic models were developed for passive margin basins, in which space is generated progressively basinward of the shoreline.
In these models, the fluvial section is thin, restricted mostly to the coastal plain, accumulates primarily during transgressive events, and is
subject to removal during a base-level fall. Conversely, foreland basins experience accommodation production increasingly landward of the
shoreline. As such, the fluvial section is likely to be thick, to extend from the coastal plain to the thrust belt, to accumulate during all phases of a
eustatic cycle, with much, if not all, being preserved during a base-level fall.

A sequence boundary is defined as an unconformity and its correlative conformity. In a passive margin setting, the unconformity exists
everywhere landward of the shoreline and the correlative conformity extends basinward from the shoreline due to continuous deposition below
base level. In the case of a foreland basin, a second correlative conformity would pass landward into the fluvial succession due to higher
sedimentation rates in that region. Even in passive margin settings, which are the most likely to show a simple relationship between base level
and adjustments to stream gradient, there are questions as to the upstream extent to which a base-level shift can be expressed by the fluvial
equilibrium profile. This is further complicated in foreland basins by a high sedimentation rate that likely keeps proximal portions of the basin
overfilled, potentially eliminating any base-level impact in this region. Additionally, there is a lag time for effects of base-level change to
propagate up the profile; for instance, as base level begins to rise, it is likely that the sequence boundary continues to incise up gradient, while
transgressive deposits simultaneously accumulate within the distal portions of previously incised valleys. Fluvial sequence stratigraphic models
place a transgressive surface at the base of highly aggradational stream deposits; therefore, if driven by eustasy in which space creation migrates
in a landward direction, it is possible such aggradational rates might not develop prior beginning of the subsequent base-level fall.

Because of uncertainty related to the issues above, disagreement exists as to where to place the sequence boundary. Many prefer the base of
thick, amalgamated sandstone bodies because of an erosive base, assigning them to the lowstand systems tract. Others choose the top of these
sand bodies, citing the gradual coarsening-upward of underlying fluvial deposits, the claim that basal erosion seems to be shallow, and that
coarsening upward appears to continue within the amalgamated sheets. A third group places the boundary within these sand bodies, indicating
that would be the base level turn-around point, with the lower portions having formed during lowstand/early transgression and the upper
during subsequent highstand.

Recent studies have begun to move away from solely accommodation-driven models and to focus more on the roles of discharge,
sedimentations rates, and changes in gradient due to tectonic processes within the thrust belt. Some models suggest tectonism leads to rapid
subsidence with development of mud-dominated axial trunk systems, transporting sediment long distances parallel to the thrust belt, in part a
resurrection of a much older idea. These are subsequently overwhelmed as the space is filled by transverse distributive fluvial deposits flowing
away from the thrust belt, in which a coarsening-upward profile is developed as more distal, lower-gradient mud-dominated deposits are
covered by prograding, more proximal, sand-dominated systems. If these models are correct, then base-level-controlled accommodation plays
little, if any, role in development of the succession, yet these models continue to assign a “sequence boundary,” despite no obvious correlation
to a base-level fall.

In essence, in the forced application of sequence stratigraphic principles to these deposits, we may have practiced model-, rather than data-
driven science, delaying incorporation of of other important factors, such as climate and sediment supply. Though nearly always mentioned,
these other factors have typically been held constant, assuming subordination to accommodation controls. With many current studies focused
on documenting changes in provenance and paleocurrent directions, along with recognition of similar fluvial cycles in non base-level controlled
modern rivers, we are making substantial changes to model interpretations, but we still seem reluctant to give up the now ingrained
terminology.

In a setting in which the multiple-working hypothesis approach clearly applies, it is critical to separate data from interpretation. If for no other
reason than associated terminology (e.g. lowstand, transgressive, and highstand systems tracts), the sequence stratigraphic approach is
inherently interpretive. It may be beneficial to return to the already formalized, data driven approach of allostratigraphy laid out in both the
North American stratigraphic code and the international stratigraphic guide. Define units on the basis of bounding unconformities
(alloformations, allogroups, etc.) without preconceived interpretations as to driving mechanisms, then interpret what’s between the
unconformities according to data, rather than trying to force an all-encompassing model, whether that be sequence stratigraphy, the distributive
fluvial system, a hybrid of the two, or other.
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