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Abstract 

In this work, we present a workflow that integrates the knowledge of the geoscientist with Artificial Intelligence (AI). It applies machine 
learning (ML) algorithms to go through extensive datasets of reservoir characterization, allowing and empowering experts to visually explore 
such datasets, to retrieve analogues, to estimate unknown parameters, and, thus, to make better-informed decisions. To prove the effectiveness 
of our workflow, we implemented a system that displays the reservoirs on a map enabling experts to visually inspect and explore data, giving 
them insights about it. RAVA (Reservoir Analogues Visual Analytics) is an interactive system that allows users to explore a reservoir database 
and to estimate unknown information of a target reservoir by automatically identifying analogues. Our workflow enables the experts to 
contribute with their knowledge in all critical steps and test what-if scenarios.  

Introduction 

Missing data is a common problem in many industries. This problem can occur by a malfunction of measurement tools or because the data 
were not collected or processed correctly. In the oil and gas industry, one of the areas that missing data is an issue is the reservoir studies. 
Acquiring geophysical data is a time-consuming and expensive activity. Moreover, depending on the exploration phase, there is little data 
available and it is not even possible to acquire new data (e.g., during the bidding phase for new areas to explore). Geoscientist experts must 
leverage the available geophysical data – albeit incomplete, low quality, and high uncertain – when making business-critical decisions, such as 
the “go / no go” of new acquisitions. One of the most common strategies in the industry is to use available known information from similar 
reservoirs (analogues) to better estimate the unknown information, drawing a more complete picture of the target area.  

In the last two decades, the computer science community has developed a body of work to visualize and analyze data from different domains 
(Batch and Elmqvist (2018); Lam et al. (2018)). There is, however, a lack of analytics and visualization tools that facilitate the investigation of 
similarities and analogies specific for the oil and gas industry. Furthermore, for experts, facts that support their decisions are paramount for 
their daily work. Thus, systems that work with artificial intelligence (AI) should not only provide useful results, but evidences to help explain 
the similarity results. To approach these issues, we developed a workflow that integrates the geoscientist knowledge with AI, applying machine 
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learning (ML) algorithms to go through extensive datasets of reservoir characterization, while also allowing and empowering experts to 
visually explore such datasets, retrieve analogues, estimate unknown parameters, and thus make better-informed decisions. 
 
We implemented a system using the proposed workflow focused on the reservoir analogues (RA) problem. Perez-Valiente et al. [2014] 
described a method to complete missing data and then calculate a list of possible reservoir analogues. We expanded this process enabling the 
expert to inspect the dataset and the results using visual analytics tools. We implemented a system that displayed the reservoirs on a map 
allowing the experts to investigate and explore the data visually, giving them insights about it. RAVA (Reservoir Analogues Visual Analytics) 
is an interactive web application that allows users to explore a reservoir database and to estimate unknown information a target reservoir by 
automatically identifying analogues given a set of key parameters. Our workflow enables the experts to contribute with their knowledge in all 
critical steps and test what-if scenarios. The similarity function, which defines the set of analogues, can be determined according to the final 
goal. For instance, the set of similar reservoirs appropriated to gather information about EOR techniques is different from those suitable to 
study porosity curves. The system allows the expert to set the similarity function for each scenario. Additionally, we have created a method to 
examine the influence of each parameter on the analogues set. This technique enables the users to understand the reservoir's similarity 
characteristics more deeply.  
 

The Workflow 
 
Our workflow (Figure 1) starts with a set of tools to inspect a dataset visually, and it should empower the expert with visual cues that enables 
the creation of hypotheses about the data and specific tasks. For instance, having in mind the task of deciding the best EOR method for a given 
reservoir, the expert must know which parameters are essential to define analogues for this task, which ones are missing and if the dataset has 
enough data to estimate those. After that, the system runs the ML algorithms and gives the opportunity to the expert to visually investigate the 
results and validate them. It is another critical step that the knowledge of the expert is crucial in the investigation. Based on the ML output, the 
expert can decide if she/he should change the values or not, choose weights for the similarity algorithm, or re-start the process. After that, the 
similarity algorithm outputs a list of analogues, and the expert can validate that. All expert interactions and algorithm results are stored in an 
experiment knowledge base that can be used to improve the outcomes of other interactions.  
 
To aid the geoscientist in finding analogues, we propose the RA strategy, summarized in Figure 2. We start with an incomplete database (i.e., 
containing lots of missing values) of reservoirs’ parameter values. The first step is “data preparation”, by choosing a target reservoir (the 
reservoir that we want to find analogues to), a parameter subset – the key parameters – and the key parameters’ weight that will be used as 
criteria to find analogues. Given this configuration, we proceed with the “data estimation” step. Given the incomplete database, we use machine 
learning techniques to better estimate the missing values, thus expanding the number of analogues that can be found. With a more complete 
database (not every missing value may be estimated), we continue to the “analogues finding” step: based on the key parameters and their 
weights, we establish a similarity function to calculate the similarity between the target reservoir and every other reservoir in the database. This 
allows us to retrieve an ordered list of analogues, from the most similar one to the least similar one. Given a subset of analogues, we can follow 
with the “parameter estimation”, generating a probability distribution function based on the chosen analogues. 
 

 



The RAVA system 
 
RAVA was created to allow the exploration of the reservoir database and the RA algorithm leveraging visual analytics techniques. It is 
comprised of three main pages: (i) the map view, (ii) the experiment configuration, and (iii) the experiment results view. Figure 3 summarizes 
each page features and the possible workflow amongst them. The map view (Figure 4) works as the main landing page. It highlights the 
geographical distribution of reservoir and properties, by placing each reservoir on its geographical position (latitude/longitude) and coloring it 
according to the current selected parameter. This allows the user to detect patterns regarding the parameter distribution behavior, providing 
insights to fill the missing data. For example, in Figure 4, it is easy to notice the “Longitude” parameter behavior, going from lighter colors on 
the left to darker colors on the right. 
 
The left sidebar shows additional information regarding the information on the database. It changes its content based on the current selection, 
allowing the user to explore the database from different abstraction levels as summarized in Figure 5. When nothing else is selected, the user 
explores the database in the “continent” abstraction level. The “Overall” tab use box plots to display the distribution of all parameters in the 
database considering all available data. The “Parameters” tab shows the distribution of the current selected parameter (in Figure 5, “Area 
(Km2)”) grouped by continents. In the “Papers” tab, the user may select a continent to see academic literature related to the selected continent. 
By choosing a basin, the content is updated. The “Overall” tab adds the parameters distribution of the basin, allowing the comparison between 
the basin and the whole database. The “Parameters” and the “Papers” tabs keep their functionality. 
 
If the user selects a reservoir, the sidebar is updated again. The “Overall” tab shows the selected reservoir’s parameter values compared to the 
distribution of the basin where it is located. The “Parameters” tab shows the parameters’ values current saved on the database in a table format. 
The “Papers” tab keeps its functionality, displaying literature related to the reservoir geographical position. Finally, the “Experiments” tab 
(only useful when a reservoir is selected) presents the list of RA experiments that were already executed using the reservoir as target. Moreover, 
if a single experiment is selected, the map shows the target reservoir connected to the experiment’s found analogues. 
 
Given a selected reservoir, the user may choose to start a new experiment, navigating to the experiment configuration page (shown in Figure 6). 
The focus of this page is the target reservoir and the key parameters that will be used in the experiment. The user selects one of the pre-defined 
key parameter templates on the left sidebar and the weight of each parameter. The central part of the screen shows the target reservoir 
parameter values for the selected key parameters, showing the numerical ones on the radial bar chart and the categorical ones on a list on the 
right. Finally, the user should choose the experiment’s minimum similarity and maximum number of analogues, to limit the number of 
analogues found.  
 
After an experiment is complete, the user may see its results, as shown in Figure 7. On the left, once again, there are the parameter values for 
the target reservoir. This time, however, missing parameters have been estimated using the RA algorithm. For example, the “Average Water 
Saturation (%)” (the highlighted line) has been estimated with a 17.82 value (compare with the image at the last row and second column in 
Figure 5, in which it is displayed the missing value “-”). Just below the table showing the parameter values, there is a map showing the 
geographical position of the analogues related to the target reservoir (the one with the marker). This is important, so the user may validate the 



findings by comparing to his/her knowledge. For example, the map is showing that the target reservoir – located in Africa’s west coast – has 
many analogues in South America’s east coast, which makes sense from a geological historical formation standpoint.  
 
On the right side, the list of analogues is displayed using the same visualization as of the target reservoir, which occupies the central part of the 
screen (in Figure 7 it is being hidden by the probability distribution chart, which will be later explained). By selecting a parameter, the slice 
corresponding to that parameter is highlighted in every visualization and the value is displayed right below the reservoir’s name. Moreover, the 
user may also see the probability distribution function amongst the analogues list, to aid in the estimation of the missing values. The chart is 
dynamically updated: if the user unselects an analogue (by unchecking the checkbox to the left of its name), it is redrawn to not consider the 
analogue. This way the user may have a fine control of the analogues list. 
 

Conclusion 
 
In this work, we presented a workflow to help geoscientists in finding analogues that mixes ML methods and visual analytics techniques. This 
combination enabled us to create a system that supports the expert gaining a better understanding of the reservoir dataset to help then formulate 
hypotheses about the data for specific tasks. As future work, we plan to research other visualization methods and their integration with ML 
techniques. We will also investigate the parameterization of the system taking into account the task, expert, and dataset enabling a suggestion 
system based on previous interactions.  Finally, we plan to study the similarity function as one of the main research directions of this work. 
There are many possible similarity functions, and we would like to incorporate them and explore the different outcomes. 
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Figure 1. General workflow for analogues discovery. 



 

Figure 2. RA algorithm strategy. 



 

Figure 3. RAVA’s main features and workflow. 



 

Figure 4. The map view showing the “Longitude” parameter. 



Figure 5. Sidebar information for the different selections (rows) and different tabs (columns). 



Figure 6. Experiment configuration page. 



 

Figure 7. The experiment results page. 


