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Abstract

Understanding reservoir heterogeneity is important for the economic success of tight gas sandstone reservoirs. The intrinsic complexity of a
reservoir is the result of depositional environment and diagenesis. In the Lower Permian Shanxi Formation of the Ordos Basin, primary
sandstone texture and composition (grain size, ductile lithic sand grains) directly related to depositional variability in the delta-front
environments, controls compaction and the abundance of cements and porosity.

This study highlights the upscaling of small-scale (pore- and core-scale) lithofacies heterogeneity for accurate field-scale geological modeling
using well logs. Five lithofacies are defined based on detrital texture and composition, diagenetic features, and pore space properties. Detrital
quartz-rich sandstones (quartzarenitic and rare sublitharenitic) show the highest reservoir quality; these sandstones can be identified by low
gamma ray, low bulk density, and high deep resistivity log values. Sandstones of the poorest reservoir quality are rich in ductile lithic grains
and clay matrix or tightly cemented with carbonate. Ductile lithic-rich sandstones (litharenitic and most sublitharenitic) are identified by high
gamma ray, high bulk density, and low deep resistivity values. Tight carbonate-cemented intervals are identified by high bulk density values.
Tuffaceous quartz sandstones with poor reservoir quality show some overlaps in well logs from other lithofacies. A model based on principal
component analysis (PCA) shows better identification of the five lithofacies than biplots of well logs.

A 3D architectural model of channel-belts is constructed based on multiple evolutionary maps of regional sedimentary microfacies. Lithofacies
are modeled further by interpreted well data using the sequential Gaussian method. At field scale, detrital quartz-rich sandstones are distributed
mainly in the lowermost and uppermost intervals of the Shanxi Formation. Tuffaceous quartz sandstones are found only in the lowermost
intervals. At a channel scale, the dominant lithofacies are detrital quartz-rich sandstones in the middle—lower interval of the distributary
channels, changing gradually upward into ductile lithic-rich sandstones. The 3D lithofacies model is validated by correlation with gas
production test which suggests it is a helpful predictive model for sweet spots in tight sandstone reservoirs.



References Cited

Cao, B.F., 2017, Availability of Tight Gas Sand Reservoir and Formation: A Case Study from Upper Paleozoic Shanxi Formation,
Southeastern Ordos Basin: Ph.D. Dissertation, University of Chinese Academy of Sciences, p. 174.

Ozkan, A., S.P. Cumella, K.L. Milliken, and S.E. Laubach, 2011, Prediction of Lithofacies and Reservoir Quality Using Well Logs, Late
Cretaceous Williams Fork Formation, Mamm Creek Field, Piceance Basin, Colorado: American Association of Petroleum Geologist Bulletin,
v. 95/10, p. 1699-1723.



ABSTRACT

Understanding reservoir heterogeneity is important for the economic success of tight gas sandstone reservoirs (Ozkan et al., 2011; Cao,
2017). The intrinsic complexity of a reservoir is the result of depositional environment and digenesis. In the Lower Permian Shanxi
Formation of the Ordos Basin, primary texture and mineral composition of sandstones (grain size, ductile lithic sand grains) directly related
to provenance and depositional variability in the delta-front environments, controls compaction and the abundance of cements and porosity.

This study highlights the upscaling of small-scale (pore- and core-scale) lithofacies heterogeneity for accurate field-scale geological modeling
using well logs. Five sandstone lithofacies are defined based on detrital texture and composition, diagenetic features, and pore type. Detrital
quartz-rich sandstones (quartzarenitic to sublitharenitic) show a patchy cementation in minor amounts dominated by a combination of
quartz overgrowth, ankerite or calcite, and clays. These sandstones exhibit the highest reservoir quality and can be identified by low gamma
ray, compensated neutron, and bulk density; and high acoustic and deep resistivity log values. Sandstones with the poorest reservoir quality
are rich in ductile lithic grains and detrital matrix or are tightly cemented with carbonate. Highly compacted ductile lithic-rich sandstones
(sublitharenitic to litharenitic) are identified by high gamma ray, compensated neutron, and bulk density; and low acoustic and deep
resistivity values. Tightly carbonate-cemented intervals are identified by high bulk density and low acoustic values. Tuffaceous quartz
sandstones show some overlaps in well logs from other lithofacies. A model based on principal component analysis (PCA) show better

identification of the five lithofacies than biplots of well logs.

In this study, a 3D architectural model of channel-belts is constructed based on multiple evolutionary maps of regional depositional
microfacies. Lithofacies are modeled further by interpreted well data using the sequential Gaussian method. At field scale, detrital quartz-
rich sandstones are distributed mainly in the lowermost and uppermost intervals of the Shanxi Formation. Tuffaceous quartz sandstones are
found only in the lowermost intervals. At a channel scale, the dominant lithofacies are detrital quartz-rich sandstones in the middle-lower
interval of distributary channels and the axis, changing gradually upward and at the marginal parts into tuffaceous quartz sandstones or
ductile lithic-rich sandstones. Tightly carbonate-cemented sandstones are randomly enclosed in ductile lithic-rich sandstones. The 3D
lithofacies model is validated by correlation with gas production test which suggests it is a helpful predictive model for sweet spots in tight

sandstone reservoirs.
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The sandstones are coarse- to fine grained.
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3-D GEOLOGICAL MODEL
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Lithofacies are modeled further by interpreted well data using sequential
Gaussian method. At field scale, detrital

quartz-rich sandstones are
distributed mainly in the
lowermost and uppermost
intervals. Tuffaceous
quartz sandstones are
found only in the
lowermost intervals.

I uthofaciest

Uthofaces2

Uthofaces3

Uthofacesa
Uthofacess

- Mudrodk

M
Y . .3 i Sandstone . e Sandstone
A ST e Y ! e e g P
ShanwZ7 777772 o | Shan 22 o
$400 N,
2.wn ™ 5 v AL X

At a channel scale, the
dominant lithofacies are
detrital quartz-rich

" sandstones in the middle-

Uthofaces2

ofacess lower interval of

Uthofacesa
Uthofacess

B distributary channels and
the axis, changing gradually
upward and at the marginal
parts into tuffaceous quartz
sandstones or ductile lithic-
rich sandstones. Tightly
carbonate-cemented

_ _ sandstones are randomly
A 3D architectural model of channel-belt is enclosed in ductile lithic-

constructed based on multiple evolutionary maps of rich sandstones.
regional depositional microfacies

¢

B Lithofaciest S h a
Uthofaces2 .
Uthofaces3
Uthofacesa

Uthofacess

B iucrock

CONCLUSION

For strong heterogeneity in petrography and petrophysics of tight gas sand
reservoirs, multiple scales of analyses from microscale, drill core to well

logging have been conducted and five petrofacies have been defined in gas
reservoirs.
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A model based on principal component analysis has been constructed to
predict high-quality rocks using well logs corrected from thin section and drill
core data. The micro-scale description of petrofaceis has been upscaled to
field-scale characterization by facies-controlled modeling technique and
availability of tight gas sand reservoir has been quantitatively assessed.
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