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Abstract

Fluvial meander bends undertake expansion, translation, rotation and combinations thereof as they evolve. However, relationships between the
migratory behavior of a river, the geometry of accumulated sedimentary bodies (e.g., point bars, counter-point bars) that arise from channel
migration, and the resultant internal lithofacies distribution within these bodies remain relatively poorly understood. To explore the relationship
between fluvial channel evolution and resultant accumulated stratigraphic architecture, a forward numerical stratigraphic model — the Point-Bar
Sedimentary Architecture Numerical Deduction (PB-SAND) — has been developed that uses a combined geometric-stochastic approach. The
model is applied to predict types of lithological heterogeneity and sandbody connectivity in fluvial successions for a variety of meandering
river types.

The modeling approach is constrained by quantified sedimentological data from real-world case-study examples stored in a relational database,
the Fluvial Architecture Knowledge Transfer System (FAKTS). The model has the following capabilities: 1) to replicate bar-growth trajectories
and sedimentary structures of meandering systems based on real-world data of sedimentary architecture derived from modern rivers and ancient
successions that serve as geologic analogs; 2) to examine the sensitivity of intrinsic system behavior to different allogenic controls operating at
varying spatial and temporal scales, such as point-bar elements in humid coastal plain vs. dryland fluvial fan settings; 3) to quantify the
heterogeneity and compartmentalization arising from intra-bar mud drapes; 4) to predict the sedimentary architecture of meander belts arising
from repeated migration and avulsion of river reaches; 5) to predict fluvial sandbody stacking patterns, for example in response to coeval rift
basin development.

The grid-free, 3D model provides linkage between local outcrop measurements and large-scale evolutionary behavior, and allows quantitative
assessments of possible scenarios depicted in traditional qualitative facies models. Output from PB-SAND can be employed to condition
reservoir models at different spatial scales, notably by creating training images for constraining models built through techniques based on
Multi-Point Statistics. More realistic architectural geometries and spatial distributions of facies associations markedly enhance conventional
reservoir models, thereby improving fluid-flow simulations.
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. Abstract Forward Stratigraphic Modelling Algorithm
Fluvial meander bends undertake expansion, translation, rotation and combinations thereof as they evolve. The modelling workflow uses a combined geometric-based, process, and stochastic approaches to
However, relationships between the migratory behavior of a river, the geometry of accumulated sedimentary reconstruct the complex spatio-temporal evolution of a variety of meandering river behaviours and to predict
bodies (e.g., point bars, counter-point bars) that arise from channel migration, and the resultant internal variations in 3D geometry and lithofacies distribution of sand- and mud-prone packages of point bars under
lithofacies distribution within these bodies remain relatively poorly understood. To explore the relationship different conditions of channel migration. The modelling algorithm is based on key parameter controls, such as
between fluvial channel evolution and resultant accumulated stratigraphic architecture, a forward numerical the meander-bend transformation style, degree of sinuosity, distance from meander apex, and the locations of
stratigraphic model — the Point-Bar Sedimentary Architecture Numerical Deduction (PB-SAND) — has been the inflection points of meanders and their change in position over time.
developed that uses a combined geometric-stochastic approach. The model is applied to predict types of
Itithological heterogeneity and sandbody connectivity in fluvial successions for a variety of meandering river Morphological Evolution of Point-bar Elements in PI
ypes. | : .
The modeling approach is constrained by quantified sedimentological data from real-world case-study J e
examples stored in a relational database, the Fluvial Architecture Knowledge Transfer System (FAKTS). The b
model has the following capabilities: 1) to replicate bar-growth trajectories and sedimentary structures of
meandering systems based on real-world data of sedimentary architecture derived from modern rivers and
ancient successions that serve as geologic analogs; 2) to examine the sensitivity of intrinsic system behavior to oudr
different allogenic controls operating at varying spatial and temporal scales, such as point-bar elements in %
humid coastal plain vs. dryland fluvial fan settings; 3) to quantify the heterogeneity and compartmentalization £ 640
arising from intra-bar mud drapes; 4) to predict the sedimentary architecture of meander belts arising from z
repeated migration and avulsion of river reaches; 5) to predict fluvial sandbody stacking patterns, for example 620F
in response to coeval rift basin development.
600+
The grid-free, 3D model provides linkage between local outcrop measurements and large-scale evolutionary
behavior, and allows quantitative assessments of possible scenarios depicted in traditional qualitative facies sl
models. Output from PB-SAND can be employed to condition reservoir models at different spatial scales,
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notably by creating training images for constraining models built through techniques based on Multi-Point
Statistics. More realistic architectural geometries and spatial distributions of facies associations markedly
enhance conventional reservoir models, thereby improving fluid-flow simulations.

x Fig. 2. Modelling the evolution of point bars in plan view. The temporal locations at {,, t,, and t,are shown in
Introduction and Backg round bold lines. Ajet colour (dark blue to dark red) scheme is used to differentiate meander positions at different
times. The spatial dimensions here are arbitrary, but the modelling results can be readily scaled to physical

Basic meander-bend transformations have been well-recognised: expansion, translation, rotation, and units based on data from field measurements or remote sensing. The shape of the modelled point bar is
combinations thereof. The relationship between point-bar geometry, migration, and facies distribution (in both comparable with that of point-bar elements commonly found preserved in the ancient rock record.

plan views and vertical successions), however, remains inadequately understood, principally because of the
limited availability of field data in the form of 2D outcrop sections in the rock record, and partially because of
difficulty in reconstructing complex evolutionary history and internal architecture of meander bends. . . . . .
Stratigraphic successions of fluvial point-bar elements are typically characterised by vertical and lateral facies Cross-sectional CompIeX|ty and Lithofacies of Poin
heterogeneity whereby sand-prone packages are draped and partitioned by mud-prone deposits of variable _

thickness and continuity in response to temporal and spatial variation in depositional processes. In contrast to

sand-dominated point-bar elements, counter point-bar elements typically comprise mud-dominated B clay-prone
lithofacies whereby distinctive concave scroll patterns are formed by downstream meander translation, [ site
notably in systems space constrained by incised valleys, local tectonics, or erosion-resistant mud-filled fine sand
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Fig. 1. Basic forms of meander-bend transformations: (a) expansion, Songhua River, China; (b) expansion multiple-scale mud drapes with three different thicknesses (I, Il and Ill) that are controlled by their
and rotation, Mississippi River, USA; (c) translation, Rio Negro, Argentina; (d) translation and rotation, Rio respective probability curves of occurrence. The vertical position of the point to which mud drapes extend
Negro, Argentina. Arrows show migration directions of scroll bars. (e) Traditional meandring river facies down the bar front are also modelled using a Gaussian distribution curve specified by users; three
models built from observation of facies and their spatial distribution from limited number of case-studies examples are shown in circles.

(Ghazi & Mountney, 2009).




Applications of PB-SAND

PB-SAND is a numerical model for the forward modelling of the development of stratigraphic architectures and internal lithofacies distributions
associated with fluvial point-bar elements, and similar elements present in fluvial and tidally influenced fluvial systems (Yan et al., 2017). PB-SAND is
coded in Matlab with a user interface programmed in C#. It is designed as a tool for sedimentary research and finds specific application in aiding the
development of improved reservoir modelling workflows, whereby PB-SAND can be used to generate training images for use in MPS modelling
workflows, and numerical output can be used in object-based modelling workflows using industry standard software such as Schlumberger Petrel. The
model can be applied to reconstruct the complex spatio-temporal evolution of a variety of meandering river behaviours and to understand potential
evolutionary trajectories and sedimentary structures of both ancient and modern fluvial meandering systems. The model (i) serves as a useful tool to
improve our understanding of the origin of stratigraphic complexity and heterogeneity in fluvial depositional systems at a variety of different spatial scales,
and (ii) is directly applicable to subsurface hydrocarbon reservoir and groundwater aquifer appraisal.
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Fig. 6. Examples of fluvial point-
bar elements in humid coastal-
plain systems. (A) Point-bar
elements in the Upper Arang
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preserved clay plug and lateral- the distribution of mud-drape thickness in humid coastal plain and
accretion surfaces from the dryland fan systems. (C) and (D) show the proportions of mud,
Miocene Huesca fluvial fan. Ebro sand, and gravel facies in point-bar elements of humid coastal plain
Basin, Spain (adapted 'from and dryland fan systems, respectively. See details in Yan et al.
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Fig. 14. (A) Seismic time slice through the meander-belt deposits. (B) Facies logs from eight of the wells drilled in the northern point-bar body; only
the interval interpreted as point-bar deposits is represented. (C) Flow chart of workflows for the creation of static models for large point-bar
reservoirs using PB-SAND; boxes represent inputs (blue), operations (purple), and outputs (green). Dashed lines indicate additional routes by
which some observations could be used to constrain modeling operations. See details in Colombera et al. (2018).
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Fig. 16. Geocellular models (upscaled grids) for the central point-bar body built
using PB-SAND. Fence diagrams of the grids are shown on the left-hand side,
coded by facies type. Shaded 3D views of the modeled mud drapes in each
simulation are shown on the right-hand side.
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Fig. 17. Comparison between the two models for the northern
point bar created combining PB-SAND with SIS (red), and two
corresponding SIS models that were not conditioned on regions
generated with PB-SAND (blue). The models that incorporate
accretion geometries generated using PB-SAND are
characterised by significant difference in connectivity functions,
highlighting the importance of accounting for styles of meander
growth when modelling facies distributions.

Fig. 18. Idealised examples that illustrate the effect of sample size on the
number and size of connected components made of point-bar sands that are
compartmentalized by mud drapes, in both plan view (A) and cross sections
(B). In each sample (black frames), different connected components of point-
bar sands are represented as variably coloured sectors. The largest
connected components in each sample are denoted by stars.
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