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Abstract

Mass- transport deposits (MTDs) are important stratigraphic elements in many deepwater basins and they constitute a primary component of
heterogeneous siliciclastic seal sequences in many of petroliferous basins around the world. Although 3D seismic characterization of MTDs has
been carried out extensively from a number of case studies in a range of basins, no comprehensive scheme has been presented to classify their
internal architecture in a manner that is directly mappable onto the problem of defining their potential as sealing sequences.

In this work, a qualitative object based seismic facies classification for MTDs is presented based on an extensive review of the internal 3D
seismic architecture of MTDs from the Taranaki Basin, New Zealand and other published literatures. In order to ground truth, the classification
scheme with lithology information and evaluate the leakage or seal potential, lessons learned from outcrop studies of MTDs are briefly
highlighted. Three main types of deformation are recognized within MTDs consisting of (1) layered, (2) blocky, and (3) amorphous, based on
five criteria including a) external geometry, b) internal reflection configuration, and inferred stress regime, c) reflection continuity, d)
amplitude strength, and €) RMS amplitude and/or coherency pattern. It is observed that in many petroliferous basins, at least two of the three
types of facies are developed in MTDs, and in some, the three types can be found distributed within a single MTD.

The seismic facies classes of MTDs would have significantly different implications for hydrocarbon potential. It is proposed in this project that
the geometry of the internal seismic character of an MTD and the N/G play an important role in determining the sealing capacity i.e. whether
the MTD leaks or not. The seismic facies classification for MTDs provides a seismic interpreter with a rapid analysis of the deposit whose aim
IS to come up with a risk map that can better inform exploration decision making.
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1. Project Rationale

Ithas been pointed out that the role of the Mass Transport Deposits (MTDs) in analogous hydrocarbon traps has
been less explored. Although 3D seismic characterisation of MTDs has been carried out extensively from a number
of case studies in a range of basins, no comprehensive scheme has been presented to classify their internal

architecture in a manner that is directly mappable onto the problem of defining their potential as sealing sequences.

In order to assign risk levels to MTDs which are now being increasingly recognised as ubiquitous components

of seals, a three i of the MTD must be defined indluding a

description of heterogeneities on any observable scale, not merely those accessible from core or well data
Seismic data, however, have a resolution of at least several meters and do not provide direct information on

the lithology which is critical in assigning a risk to seismic facies classes. In the absence of seismic calibration,
prediction on MTD lithology heterogeneities can be based on exposed outcrops of MTDs provide good analogues
10 assess for such heterogeneities. In this project however, some scenarios were considered (high NIG, moderate
N/G and low N/G) in order to make predictions about seal integrity of MTDs.

Itis important to note that due to the resolution of seismic data and for the purpose of developing a seismic based
classification, only MTDs which have thicknesses equal o or greater than 100 m are considered in the proposed
classification.

2. Geological setting
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Fig. 2.1. (a) Map showing the study area along the western margin of New Zealand's North Island including
relative location of Taranaki Basin, ts northwestern deepwater extension and corresponding tectonic
framework along Australian-Pacific plate boundary zone. (b) Structural domainsand principal tectonic and
volcanic features of Taranaki Basin, (Modified King and Thrasher (1996) and Omeru 2014),
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3. Stratigraphy 4. Data and Method
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The data for this study is the Romney 3D survey (Fig. 1) located on the southern lobe of MTD and which images an
area measuring 590 km 2. The 3D seismic data was provided by Anadarko Petroleum Corporation as a 16-bit scale
and clipped volume because it included multiple prospects and leads. The data was processed to post-stack time-
migration (PSTM), zero-phased, and Automatic Gain Control (AGC) was applied. The data was migrated using

FORMATIONS

Kirchhoff pre-stack migration and bending ray post-stack migration to generate a 12.5 m by 12.5 m grid with a 4 ms
sampling interval and was displayed every 4-inlines and cross-lines giving it a bin-size of 50 m which corresponds to
the maximum horizontal resolution. The data is displayed using SEG-Normal polarity where an increase in acoustic
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Figure 3.1. Miocene to Recent stratigraphy for the Taranaki Basin ( Modified from King and Thrasher
1996). This is focused on the Pliocene to Pliestocene Giant Foreset Formation in the Western Stable

Platform.

impedance is represented by a peak (positive amplitude-red on seismic sections).
The main frequency of the 3D seismic data is 50 Hz, yielding a vertical resolution
of approximately 9 m which equals one quarter of the wavelength at the dominant

frequency assuming a sediment velocity of 1800 ms-1

6.1. Layered

The classification workflow consists of three steps
1) The basal shear and top surfaces (upper and lower limits) should be mapped.

2) If the MTD is greater than 100 m in thickness then it is best to divide the deposit

iso-proportionally in windows and calculate the Root Mean Square (RMS) amplitude

6. Internal architecture

for each window to unravel the MTD morphology by looking at patterns and colour.

3) Pattern recognition techniques are employed to interpret the RMS amplitude map.
Traces which are close together in term of seismic attribute will stand in the same
group of seismic facies . It is essential for an interpreter to iterate between section
and plan views during the interpretation of the MTD interval, which is a critical step
in the seismic interpretation

5. Overview of MTD seismic facies classes
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7. Seismic example from other basins
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The relative degree of risk associated with MTD seals of the three main seismic

classes of MTDs are discussed i this section considering a variety of geological
(e.g range of layer tries and in low NIG versus

high N/G systems) as observed from outcrop. However, we first considered, two

Firstly, the seal quality critically depends on N/G of the MTD. This is determined
by the provenance or staging area of the mass-transport deposits. For example,
a sand-rich MTD like the example from the Gordo Megabed Spain (Fig. 9.2)
would prove to be high risk seal compared to the mud-rich MTD of the Ross slide
(Fig. 9.1) whose thorough disaggregation renders any limited sand layers
completely unconnected and hence would constitute a high quaiity seal.

Slope derived MTDs will likely be mud rich because the siopes are commonly the
site of predominantly mud deposition while shelf-edge derived MTDs or those
involving basin floor sediments may be sand rich (Lucente and Pini, 2003;
Dykstra et al. 2011; Posamentier and Martisen 2011).

Secondly, the incorporation of strata below the main detachment during MTD
translation may be important in determining the seal characteristics of the MTD.

Figure 9.1. Mud-rich MTD from the Ross Slide, SE Ireland would
constitute an excellent seal (from Lien et al,, 2007).

Figure 9.2 Sand-rich MTD from the Gordo Megabed,
SE Spain would constitute a poor seal (from Cossey, 2006),
important factors from a seal quality perspective.

9.2 Pervasive structures within MTD

Based on outcrop observation of MTDs a seal risk diagram for
the proposed MTD classes has been created (Fig. 10.16).

Given a low N/G system, the blocky unit will constitute the highest
seal risk. However, as NIG increases, all three classes of MTD will
constitute high risk seals.

The layered facies does not represent high risk due o the semi-continuous and
continuous beds within the MTD and the consequent lack of cross-stratal flow
routes will engender this with good sealing potential. However the.

presence of through-going faults transecting this unit might prove render the unit
as high risk as evidenced in figure 9.3. The seemingly tight fault zones are
infilled with mineralised veins, In addition the sand-rich layered unit will represent
high risk seal since leakage can occur via the pore network over geologic time.

The seal isk associated with the extensional blocky facies would depend on the
preservation of the original stratigraphy of a remnant block, height of block and
the presence of interal or fault bounded fault as opposed to the variability in
net-to-gross values. However, the extensional blocky units vl

become high seal risk with an increased net-o-gross because possible migration
pathway might occur via permeable beds without any faulting

In reality, most of the normal faults that define the extensional blocky class will
not represent a threat to the integrity of the seal because any significant vertical
stress would generally keep the low angle fault surfaces tightly closed to fluid
flow with a low static vertical Therefore, only dilation
under high pore fluid pressure (probably from the underlying reservoir) would
open them up and increase permeability along the fault zone, and this would be
2 mechanical seal failure involving reactivation.

Figure 9.3, This provides evidence that these seemingly tight faults can
be migration paths through an otherwise fiat sealing unit. Through going
fault in a layered unit filled with mineralised vein.

The seal isk associated with the folded structures comprising the contractional
blocky unit probably mainly depends on the extent and character of numerous

sub seismic faults and fractures on the crest of folds which could possibly act to
connect permeable sandy carrier beds of the foid limbs. However this leakage
mechanism requires that the sub-seismic faults do not form clay smear or cataclastic
seals against the leaky strata (Ingram & Urai, 1999). Evidence for leakage

through crestal faults is visible in outcrops example (Fig. 9.4) and it is thought

that the carbonate concretions aligned paralle to the axis of a recumbent fold
indicated persistent migration of formation fluids (Sporfi & Rowland, 2007). Figure 9.4. Can folds be leaky? Here we see a another 3D exposure
of recumbent fod with consistent bed thickness. However, through the

hinge of the fol i
The seal risk associated with the thrusted structures in the contractional blocky :;"r?;;lm"': ;T;m":r:aZIIal g oy paiees ln:‘loi ::e P

facies will be the headwall dipping thrust faults that might act as migration conduit for fokd possibly indicating parsistent leakags of formation fuids (from
hydrocarbon. Just like in the extensional blocky facies, these thrust faults are expected Sporfi and Rowdand, 2007)

10 be closed because confining stress but would probably dilate under high pore fluid
pressure, thus acting as a conduit for leakage

In addition, thrusted units sometimes comprise a succession of thrusted, deepwater
turbidite deposits that have largely remained intact extending from the basal surface

to the upper surface of MTDs (Fig. 9.5). From a seal perspective, such mass-transport
deposits, characterized strong stratigraphic continuity form base to top, would constitute
relatively poor seals as leakage can ocour via permeable beds.

Toe Thrust Example

The seal risks associated with the amorphous unit mainly depend on N/G and
In cases where the amorphous unit is mud-ich, high capillary entry pressure layers
overly the sealing surfaces, thus the fluid transmissibilty of the contacts will be very low
and stratigraphically assisted trapping of hydrocarbons is possible. Many muddy debrites
are described from ODP boreholes penetrating this seismic facies class.

These often have a higher density than the neighbouring units of undeformed clay.
implying loss of water during mobilisation and consequent strengthening of the remoulded
clay fabrics

However with an increased N/G the amorphous unit will represent high risk since it is
more likely that any sandy units will be connected with relatively high permeabiliies of the
matrix components.

Furthermore, the seal risk associated with the incomplete amorphous unit may

be fluid migration pathways provided by connections between sandy units via

the thinly bedded sand and silts or faults existing in isolated blocks within the unit

Figure. 9.5. Stratigraphic continuity preserved in a toe thrust comprising
of deep-water trbidite deposits. These beds might extend from the base
o the top of the MTD and as such constitute poor seal (from Cossey, 2011),

OXFORD

10. Conclusion

1. Three main MTD seismic facies types have been proposed including 1) Layered, Blocky and Amorphous
i have also been provide. However, there is an inherent difficulty of

facies. Uneq P
scaling up from outcrop to seismic scales.

2. Although details of folding and faulting are limited by seismic resolution, our direct observations of slump folds
and their associated regional patterns allow greater controls and confidence to be placed on such seismically
imaged systems.

3. Features that physically compromise sealing lithologies within MTDs, i.e., faults and sand beds are first order
risks and should be incorporated into any risk assessment.

4. Detailed outcrop study of MTDs coupled with accurate subsurface mapplng is the approach that will result in
the most risk i
and structural geometry of MTDs.

This requires both detai pping and prediction of the stratigrap
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