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Abstract

The Earth’s complexity near the surface introduces many challenges in land seismic exploration. In arid areas such as much of the Middle East,
karst features and unconsolidated sediments make the problem more difficult by introducing a complex velocity contrast, and complex
anisotropy and attenuation problems, in addition to strong scattering of surface and body waves that interfere with the imaging of deeper
structure. In this article, we tested and applied Full Waveform Inversion as a high-end technology in velocity model building and seismic wave
migration for imaging complex near-surface structure having small-scale geological features using the Arid SEAM Phase 1l synthetic model.
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Motivation

Approximately 2/3 of the remaining conventional oil and gas
reserves are on land.

Growing challenges of land hydrocarbon exploration place
increasing demands on accurate, high resolution 3D seismic
images to identify unconventional and low relief reservoirs
with small extension.

Traditional geophysical tools for near-surface velocity
reconstruction such as refraction and diving wave
tomography have limited success for cases with near-
surface velocity inversion and strong lateral heterogeneity.

Drilling optimization and efficiency decreases in karstic
areas.
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Problem Definition

Complex near-surface geology

» Karst

Low velocity unconsolidated sediments

Stream channels

Hard outcrop refractors

Problems caused by these complexities

+ Scattering of seismic energy

+ Distorting and degrading images of underlying structures.
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In case of intercalated thin beds of Carbonates and Dolomite (high velocity) and
Sandstone and Shale (low velocity), refraction and diving wave tomography won't
define low velocity layers.

Source: ulrichstill

Carbonate Outcrops of the World

Karst is an irregular limestone region with sinkholes, underground streams, and caverns
largely shaped by the dissolving action of water on carbonate bedrock (usually limestone,
dolomite, anhydride or marble).


https://de.wikipedia.org/wiki/Benutzer:ulrichstill

Research objectives

The primary objective is to use FWI to better characterize the near-surface zone:

1. Examine if FWI can accurately reconstruct models of small shallow geological features with strong velocity contrast

2. Assess subsurface imaging improvement



Arabia Peninsula - near-surface geology
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SEAM Phase Il - Arid model

The Arid SEAM Phase Il model exhibits the same reservoir and stratigraphy as the unconventional SEAM (Barret) model, but replaces
the first 500 meters with complex near-surface features encountered in desert terrains like the Arabian Peninsula. In such terrains,
features including karst, wadis, stream channels and low velocity unconsolidated sediments in the near-surface introduce strong
velocity contrasts.
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Simulation of viscoelastic data by FDM
Modeling inputs are Vp, Vs, Rho, Qp and Qs of the SEAM Il arid model and a Klauder source wavelet.

Klauder wavelet with 3-20Hz




Correlation between seismic wavefield and the
near surface velocity

First arrivals show complex static issues that are correlated with
shallow karst locations in the velocity model.

Dispersion of surface waves confirms the presence of strong -~ em—— X =10km_ — — ——
velocity variations. A

All' hyperbolic energies below the green line are multiples and/or
S-wave reflections.

Scatting on seismic correlates with karst locations in the velocity
model.

T=2.7 second.




FWI - general workflow

Starting model Real Data
Forward » Synthetic
modeling Data

Iterative
process

Residual
Updated derivation & R
Model inversion




FWI - Challenges

FWI is plagued by the local non-linearity issue which depends on

» The closeness of the starting model to the true (unknown) model }m,)

« Availability of low frequency and far offset in the recorded data

Additional challenges associated with applying FWI to land data

m global m 1

« Strong near-surface effects such as attenuation, ground roll, and scattering due to rapid
geological variations

 Elastic FWI is challenging because we have to invert for density, P-wave velocity, and S-wave
velocity simultaneously as well as modeling low-velocity surface and S-waves.

» Viscoelastic FWI is even more challenging because we have to invert for density, P-wave velocity,
S-wave velocity, Qp and Qs simultaneously at all frequencies of the recorded data.

Apply acoustic FWI on land seismic data which is dominated by elastic energy.



Elements of a successful acoustic FWI on land data

elements
of success

IT&LSs
objective
functions

Before FWI
1. Use seismic data processing to eliminate non-acoustic energy.
(% - b“ by

2.  Using surface wave inversion (SWI) and manual velocity picking to build an accurate initial velocity r ’
During FWI workflow ’
1.  Estimate the wavelet from the input data at each frequency band. . '

! wav inpd quency AV, using TT
2.  Start with the lowest frequencies and gradually increase the bandwidth of the data.

3.  Start with early arrivals and include deeper ones gradually.

1) ——— -—
“un Wdﬂ”l
N~

4. Use travel time (TT) objective function followed by least square (LS) objective function.

AV, using LS

Jiao, 2015

600 H00  velocity(fs)

600 velocity(ft/s)



Elements of a successful acoustic FWI on land data
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Viscoelastic modeling parameters

Parameter: Value

Type of forward modeling Viscoelastic (Vp, Vs, Rho, Qp, Qs)
Wavelet Klauder (3-20 Hz)
Free-surface multiple included

Noise included

Maximum frequency 25Hz

Acquisition geometry 20km 2D line with SI=25m & RI=12.5m




Noise attenuation to eliminate non-acoustic energy

X = 10km
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Manually-picked velocity model
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Manual plcked velocity model + SWI
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Acoustic FWI on viscoelastic synthetic data

Peak Frequency | Inverted energy No. of Objective
frequency band iterations function

Refraction TT+LS
6 1-11 Refraction SR TT+LS
8 2-14 Refraction + Reflection ~ 5+6 LS
12 2-21 Refraction + Reflection ~ 6+6 LS

40 iterations, each iteration has 3 forward modeling and one migration




Initial model
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Estimated model by FWI (peak freq. =12Hz)
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True model
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Conclusions

» Data pre-conditioning helped in estimating a more accurate near-surface model which made
using acoustic FWI on an originally viscoelastic data effective.
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