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Abstract 

Geostatistical reservoir modeling necessitates assumptions that often over-simplify heterogeneity, causing realizations to belie complex 
geologic reality. Outcrop studies provide robust suites of subseismic-scale (bed- to geobody-scale) statistics that characterize internal geobody 
architecture (e.g., bed thicknesses and lengths, grain size distributions). However, direct integration of such data into subsurface modeling 
workflows that capture geological complexity, remains challenging. This study: (1) presents bed-scale statistics from Late Cretaceous 
Horseshoe Canyon Formation fluvial point bar deposits that outcrop in southeastern Alberta, (2) investigates multiple modeling methodologies 
to test how different algorithms can integrate such statistics into reservoir modeling workflows, and (3) generates models that retain the 
geological essence of the outcrop deposits. 

Stratigraphic sections (n = 40) record grain size, sedimentary structures, and bedding characteristics, providing the basis for reservoir model 
facies classification. Differential GPS surveys delineate individual lateral accretion packages (LAPs), capturing the stratigraphic framework for 
modeling outcrop architecture. Vertical and horizontal facies proportions and transition probabilities are calculated from measured sections, 
and constrain the probability that a facies is present at specific stratigraphic positions within each LAP. Bed-scale correlations are crucial for 
robust characterization of outcrop heterogeneity with such statistics. Probability cubes derived from these outcrop statistics guide simulations. 
Nested Truncated Gaussian Simulation (nTGS) is compared with Plurigaussian Simulation (PGS). nTGS realizations produce geologically-
realistic outcomes with a small loss of fidelity to input facies proportions. PGS realizations produce less-geologically-realistic realizations, but 
better-preserve global facies proportions. Neither reproduces the LAP internal architecture observed in outcrop. Training images derived from 
outcrop statistics for multiple-point simulation achieve what nTGS and PGS could not, generating models with a better visual match to the 
outcrop that honors input statistics. This study presents a pathway to directly constrain models to measured outcrop statistics while also 
reproducing visual outcrop heterogeneity. As such, flow simulations on such models will test the flow-impacts of outcrop-derived architecture 
rather than purely stochastic heterogeneity. 



2. Geologic Background

Horseshoe Canyon Formation outcrops exposed at Red Deer river valley in central Alberta 
comprise a 12-16 m thick fluvial meander belt deposit, which unconformably overlies 
shorefaces sands, and is capped by a laterally extensive coal (Ainsworth et al., 2015). 
Sediments shed off a NW-SE orogenic front were transported by rivers east and south 
until they were deposited at the margin of the Cretaceous Western Interior Seaway as part 
of Western Canada Sedimentary Basin (WCSB) fill. Outcrops are well-exposed due to 
“badlands” style topography 12 km southeast of Drumheller, AB.  A 3 km NW-SE (“Red 
Deer River”) exposes successions roughly parallel to flow direction, and a 1 km NE-SW 
transect (“Willow Creek”) exposes successions roughly orthogonal to flow direction.
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Figure 2.1: A) Satellite image (Google, 2016 - DigitalGlobe) of outcrops in the Red Deer River valley with measured sections locations.  Study 
location shown on inset. B) Map-view interpretation of the point bar and associated abandoned channel deposits.  Lateral accretion package 
migration direction varies through time, and deposits become more fine-grained from upstream to downstream. C) Paleoflow measurements 
(trough-cross stratification and clast imbrication) D) Depositional surfaces dip direction. E) Erosion surfaces dip direction. F) Stratigraphic 
Column for Horseshoecanyon Formation. G) Paleogeographic reconstruction of WCSB for Horseshoe Canyon Formation time (Modified from 
Leckie and Smith, 1992). Inset map shows location in North America. (Modfied from Durkin et al., 2016)
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Build bed-scale models that:

1) Honor bed-scale outcrop statistics
 - Global Proportions and NTG Trends
 - Vertical Facies Proportion Curves
 - Facies Transitions
 - Bed thicknesses and lengths (indirectly)

2) Employ readily available, “off the shelf” 
algorithms:
 - Sequential Indicator (SIS)
 - Co-Sequential Indicator (COSIS)
 - Truncated Gaussian (TGS)
 - Plurigaussian (PGS)
 - Multiple-Point (MPS)

3) Reproduce a given geologic conceptual 
model (visual essence of the outcrop)

4) Produce realizations that can test impact 
of bed-scale detail on inter- and intra- point 
bar connectivity and flow.

1. Objectives

3. Stratigraphy and Zone Architecture
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Figure 3.1: A) Willow Creek outcrop photomosaic with indicated section locations. B) Cross sections of all measured sections from Willow Creek oriented in 
the depositional dip direction. B) Field observations and photomosaic analysis. C) Corresponding facies correlation (Modified from Durkin et al., 2016). Figure 3.2: A) Zone architecture of the geocellular model. Locations of 

the Willow Creek cross-section and measured-section “pseudo-wells” 
are indicated.  The small sector model taken for Plurigaussian testing 
and transect for visualization are also labeled.  B) The sector transect 
inspects six LAP Zones. (Modified from Durkin et al., 2016).

Steeply dipping intra-point bar erosion surfaces that truncate underlying strata characterize the stratigraphic 
architecture of the deposits. Sigmoidal erosion surfaces bound concordantly-bedded lateral accretion packag-
es (LAP) of consistent dip direction and magnitude. The stratigraphic framework and facies of Durkin et al. 
(2015) are used as the basis for this study. High-energy facies include sandstone (F1), siltstone-clast brecca 
(F2), and sandstone with siltstone and organic interbeds (SIHS; F3). Moderate-energy facies include siltstone 
with sandstone and organic interbeds (MIHS; F4) and very fine to fine-grained sandstone with ripples (F5). 
Siltstone (F6) records low-energy suspension settling of sediment. Planform reconstructions of the meander 
bend architecture reveal a complex history of point bar accretion with punctuated rotation events and ultimate 
channel abandonment.

The constructed 3D geocellular model has a grid cell size of 5 m x 5 m x 0.3 m (x, y, z) to represent fine-scale 
heterogeneity. Zones were defined by intra-point bar erosion surfaces that demarcate LAPs. Zone layers (par-
allel to sigmoidal surfaces) are 0.3 m thick so as to capture outcrop detail without compromising computation-
al ability. Measured sections were integrated as hard-data for simulation as “pseudo” wellbores. TGS facies 
simulations were run on this grid. A sector model was taken out of the original grid to assess other simulation 
methods. Trends within packages and across zones make this an ideal dataset to test fine-scale facies simu-
lation.
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Figure 4.2: A)-E) Vertical proportion curves (VPC) by sub-zone, for all 
zones in the model. F)-J) with corresponding histograms. (Modified from 
Durkin et al., 2016)
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Durkin et al., 2016)
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Figure 4.4: A) Box and whisker plots of net to gross (NTG) sand thickness by sub-zone. 
B) NTG by Zone. (Modified from Durkin et al., 2016)
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Figure 4.3:A) Global horizontal proportion curve (HPC) by sub-zone, for 
all zones in the geocellular model. (Modified from Durkin et al., 2016)

Stratigraphic architecture and log data provide the basis for a 
series of statistical analyses. Vertical proportion curves (VPC) 
were calculated layer by layer for each zone and sub-zone. Hori-
zontal proportion curves (HPC) represent the lateral changes in 
facies proportions from sub-zone to sub-zone within a zone. The 
statistics are incorporated into a 3D probability volume (which 
constrains simulations as soft conditioning): vertical proportions 
at each subzone were interpolated along layers to generate 
facies probabilities at all points throughout each zone. 

Vertical transition probabilities (VTP) were calculated using an 
embedded Markov-chain analysis where the vertical transitions 
from one facies to another are tallied and divided by the sum 
total of tallies in order to produce facies transition probabilities. 
Horizontal transition probabilities (HTP) were calculated using a 
spatial Markov chain along layers (out to 200 m). These data 
inform Lithotype Rule (LTR) construction for PGS. Complex tran-
sition probabilities are simplified to an LTR, which specifies order 
of facies transition in models.

4. Statistical Methods & Probability Volume
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Figure 4.5: Probability Volumes for all facies visualized at sector model transect.

LAPs fine upwards 
internally.

Successive LAPs fine 
upwards through time.

5. 1-Dimensional Tests
2 Facies: Sequential Indicator Soft Data Experiment

3 Facies: Characterizing Horseshoe Canyon Data 
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Bz Coefficient:
A measure of how well soft data distinguishes facies

For each facies:
Bz = E{P(k|soft(u)) | I(u;k) = 1} - E{P(k|soft(u)) | I(u;k) = 0}

ie. “Mean of soft data where given facies occurs” -
“Mean of soft data where given facies does not occur”

e.g. Probabilities of  0.8 and 0.2 yield a Bz of 0.6 (given 
these cases are homogenous)

Probability of Misclassification:
A measure of how well models reproduce hard data

Where:
 c = # of times correct facies simulated
 r = # realizations
 n = # of cells

Figure 5.1: High- (shale) and moderate- (sand) proportion facies modeling tests were set up in a 13-cell 1-D 
grid with perfectly homogenous, dichotomous probability volumes (i.e. 0.8 and 0.2).  Probability volumes 
were designed to reproduce an expected case, from which implicit Bz coefficients were calculated.  High and 
low unconditional Bz scenarios were automated in SGeMS.  Probability of misclassification, a measure of 
how well realizations reproduce hard data, was used to rank the impact of Bz and ranges of soft probabilities 
(decoupled for the sake of elucidating the impact of both parameters seperately).
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- Employing soft data with a low Bz (i.e., weak soft data conditioning) produces similar results to unconditioned SIS.
- Probability of Misclassification decreases significantly as a function of Bz, but varies whether simple or ordinary kriging is employed.
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Figure 5.4: Hard Data Scenarios extracted from Log 24.  156 hard-data scenarios were tested: 31 at each of 5 different
percent-cases and one with no hard data.

- Probabilities (Fig 4.5) and measured section facies 
(upscaled to grid) were extracted along log 24 (see 
Figure 2.1 for location).
- Three facies were simulated (sand, breccia, and 
grouped fine-grained facies) to test the impact of 3 
facies and the "real data" in a simplified 1D test.
- COSIS was run with different degrees of hard data 
conditioning (hard data %) to test the relative impacts of 
hard and soft data on facies prediction.
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Figure 5.3: Global proportions and 
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Increasing soft data weight from 
low (left) to high (right) increases 
soft data influence, as expected, 
but the impact decreases with 
increasing hard data density.

Low-Proportion Facies poorly reproduced 
for all hard data % and soft data weights.

When soft data weighting is strong, hard 
data has limited impact on simulations.

- Increased hard data % reduces probability of misclassification (i.e., better reproducing 
"true" facies distribution, excepting breccia), but increases RMSE (i.e., soft data mismatch).
- Soft data, as generated from VFPs, may help drive facies distribution when constrained to 
well data in the full field model.  When soft data weight is low, the soft probabilities have less 
impact on facies distribution where as hard data % has a stronger impact (and vice versa 
when soft data weight is high).
- Low-proportion facies are not reliably reproduced by SIS, with or without incorpo-
rating soft data.

Simple 1-D, 2 facies test illustrating the impact of 1) soft data probabilities, and 2) how soft data 
weight (Bz) informs facies distribution.

Root Mean Squares Error
A measure of how well

models reproduce soft data

Where:
 o = Facies E-type value
 p = Facies Probability Volume value
 n = # of cells

Probability of Misclassification as a Function of Kriging Style 
and Probability of Sand (Bz ~1)
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-Thicker Beds
- Seismically Resolveable
LOWER MISCLASSIFICATION

-Lower Proportions (NTG)
-Thinner Beds
-Sub-Seismic Resolution
HIGHER MISCLASSIFICATION

Figure 5.2: For a Bz =~ 1.0 (i.e., fully trusting the information content of soft probabilities) a 
decreasing probability of sand is linearly correlated to the probability of misclassification of 
sand.  Conceptually, this relates back to seismic resolvability of thin beds.  Whether a given 
facies is high-proportion or not, if it is not distinct in the soft data, it will be of little aid in guid-
ing modeling.  Simple Kriging appears to be a better predictor of facies than Ordinary Kriging 
when probabilities for a given facies are high (i.e. highly distinct), but is a weaker predictor of 
facies when probabilities are less distinct.
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Figure 5.5: Type Realization and Summary Charts.  For dozens of parameterizations of each hard 
data scenario, hundreds of SIS realizations were automated with SGeMS.  Realization Root Mean 
Squares Error data was collected by comparing an E-Type for each facies to the probability volume, 
and Probability of Misclassification was calculated from the true hard data.  Each is a proxy for reali-
zation fidelity to soft or hard data, respectively.

RMS Error

Hard Data Cell; 
Not Evalauated

10 Selected Realizations

C
el

l #

Type Case: 3.23 % Hard Data, Bz: 0.3,
Simple Kriging; Ranges: Sand = 2.1m, Breccia = 2.7m, Fine-grained = 2.1m; 100 realizations

FG

S

B

Scenario

Impact of Soft Data Calibration -- Bz ~1
Simple Kriging; Ranges: Sand = 2 cells, Shale = 5 cells; 100 realizations

Testing the probability of misclassification when more than 2 facies are present in 
lower proportions. The hypothesis is that the ability to accurately predict facies 
will decrease with increasing number of facies.

All Facies
Sandstone
Breccia
Fine-grained

Sandstone
Breccia
Fine-grained

Sandstone
Breccia
Fine-grained

Type Case
herein

Type Case
herein

Match to hard data

Match to soft data

6. Results & Problems: TGS & PGS

Truncated Gaussian Summary

 - Nested, hierarchical facies simulation that can employ variography to characterize each facies’ 
spatial correlation independently.
- Leverages VPC through probability volume, but does not make direct use of VTP/HTP.
- Honors input variography and proportions.
- Reproduces some outrop essence: Breccias are associated with LAP bases and lower-energy 
facies increase up-section. Smooth transitions between facies packages.
-This realization incorporates minor smoothing.

Figure 6.2: TGS Characteristic Realization
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Figure 6.4: Likelihood of finding a particular facies in a data-set given a par-
ticular soft data (i.e. VFP) sandstone probability for A) Wells Data, B) 
COSIS, C) TGS, and D) PGS realizations.  COSIS, TGS, and PGS 
over-populate sandstone at locales with low sandstone probabilities as com-
pared to well data.
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Variogram-based methods were tested for their ability to reproduce facies architecture 
at the bed-scale.  Utilizing a small sector model allows rapid testing of multiple para-
materizations.

30.9% 
Fine-grained

Plurigaussian Summary

- Limited to two variograms per transition set to characterize all facies transition behavior and spatial correlation.
- Leverages VPC through probability volume, and approximates VTP/HTP through simplified LTR scheme.
- Honors input variography and proportions.
- Lower-quality reproduction of outcrop essence: facies length-scales and transitions are too variable and
chaotic, leading to disorderly realizations.

Figure 6.3: PGS Characteristic Realization

260 m
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  -Vt  -- 0.3m for both transition sets
 (emphasizing lateral continuity)
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Co-Sequential Indicator Summary

- Employs variography to characterize each facies’ spatial correlation independently.
- Leverages VPC through probability volume, but does not make direct use of VTP/HTP.
- Honors input variography and proportions (NOTE: this is a 3-facies case).
- Reproduces some outrop essence, but bedding is intermittent.

Figure 6.1: COSIS Characteristic Realization
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- Sand is over-populated in realizations where 
sand probabilities are low (compare graphs 
from models to well data above).  Low sand 
probabilities in Fig 6.4 A represent tops of point 
bars, which are filled predominantly by 
fine-grained facies.  Fig. 5.4 B to D show that all 
methods are populating sands in these low 
probability zones where they should not be.

- The implication is that you are creating more 
flow across point bar tops and decreasing flow 
across bottoms.
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MPS: Current Work

Layers
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Figure 8.1: Statistically-infused Training Image Generation Concept. 1) 
Measured section data is broken into subzones based on position in each 
LAP. 2) The VPC for each subzone breaks out facies proportions by layer. 
3) SISIM constrained to layer facies proportions can be stacked into a single 
simulated volume representing the subzone statistics. 4) The composite of 
many realized volumes could be chained to comparable composites from 
each other subzone to build a TI.

Deriving training images (TI) from bed-scale outcrop statistics may prove a powerful way to replicate 
geologic essence in models. Each layer in a LAP is characterized, for each subzone, through VFPs. 
Sequential Indicator Simulations (SISIM) run for each layer, with only facies proportions and variogra-
phy as constraint (and the preceding layer-realization as soft condition) can be stacked to form a reali-
zation of the subzone. Many such ‘stacks’ could be screened for realizations that honor bed thickness 
and transition probabilities, and then aggregated into a zonal TI.
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7. Problems with Variogram-based Modeling

8. Training Image-Based Modeling

Candidates Include:

- Deterministic training images derived from outcrop photopans (see Figure 3.1).
- SNESIM    Widely deployed MPS algorithm.
- FILTERSIM   FILTERSIM can utilize conventional categorical training images, but because FLITERSIM can utilize continuous training images, there is space to experiment with the probability volumes directly.

Given the limits of variogram-based modeling, pattern-based modeling may hold the key to bed-scale architecture reproduction through training images development via outcrop statistics.

9. Conclusions
-COSIS, even with strong soft conditioning, may have difficulty reproducing proportions of facies where the target-proportion is low.

- TGS and PGS reproduce facies proportions correctly, but do not appear to reproduce architecture adequately.

- Pattern-based modeling algorithms will be explored as an option to reproduce bed-scale facies architecture.
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Figure 7.1: A) Vertical and B) Horizontal transition probabilities visualized as Circos diagrams (Circos Table Viewer, 2017) where col-
ored bands represent probability of transition between given facies.  C) For PGS, these complex facies-transition relationships must 
be simplified into Lithotype Rules (LTR) that enforce order of occurrence and transition between facies (e.g. in LTR B, Breccia must 
lie adjacent to Sand or MIHS). These LTR examples are symbolic of the mean probability of each facies’ probability volume and D) 
correspondingly the true measured facies proportions.  

- Variogram-based modeling some-
times under-represents low-proportion 
facies.

- PGS and nested, heierarchical TGS 
adequately reproduce low-proportion 
facies in realizations.

- Low-proportion facies are baffles and 
barriers to flow that are important to 
represent correctly.

- PGS and TGS do not appear to ade-
quately reproduce architecture of 
low-proportion facies.  While we hy-
pothesized that transition statistics 
could enforce architectural outcomes, 
Lithotype Rules over-simplify transition 
probabilities when facies are numer-
ous, and/or given facies are low-pro-
portion, resulting in sub-obtimal realiza-
tions.
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Successful deployment of probability 
volumes and transition statistics is 

poportion-dependent.
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