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Abstract

Meandering fluvial systems form highly compartmentalized hydrocarbon reservoirs. Variogram- and object-based modeling techniques commonly fail to
reproduce the geometry, distribution and lithological heterogeneity of major geobodies (e.g., point-bar elements and sinuous channel-fill deposits, mud
drapes). A novel workflow for the generation of training images of fluvial meandering systems using Multi-Point Statistical techniques (MPS) has been
developed. The aim is to produce a suite of models with higher geologic realism compared to outputs of traditional methods. The workflow includes the
use of a library of training images in combination with tailor-made auxiliary-variable maps designed to handle non-stationarity. Training images with
different levels of stationarity have been tested and included in a library to enable geomodelers to select the most suitable reservoir representation.

The training images are created using quantitative information derived from a relational database of geologic analogs (Fluvial Architecture Knowledge
Transfer System; FAKTS), and a forward stratigraphic modeling tool which simulates fluvial meander-bend evolution and resulting point-bar facies
organization (Point-Bar Sedimentary Architecture Numerical Deduction; PB-SAND). The devised training images incorporate fundamental features of
the facies architecture of fluvial point-bar elements and larger meander belts composed of these and related elements.

The application of training images has been optimized to two MPS algorithms: SNESIM and DEESSE. To best model particular fluvial meandering
successions, realizations have been performed whereby optimal reproduction of facies proportions, facies relationships, and architectural geometries is
achieved, in part through incorporation of stationarity in the training images. The sensitivity of input parameters has been analyzed with multiple
simulations across parameter space to define optimized modeling recipes for different fluvial systems, i.e., pairings of training images with sets of input
parameters and auxiliary maps, and selections of appropriate MPS modeling algorithms. Modeling outcomes are compared quantitatively and
qualitatively against corresponding facies models generated using variogram-based techniques. Results show that MPS techniques benefit from training
images based on forward modeling to deliver realistic realizations better able to incorporate the fundamental heterogeneities of fluvial meandering
systems.
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Fluvial point-bar architectural-element training-image library

TRAINING IMAGES FOR EXPANSIONAL POINT-BAR ELEMENTS

EXPANSIONAL EXPANSIONAL (One bend) EXPANSIONAL (One bend) EXPANSIONAL
(One bend) Continuous mud drapes Discontinuous mud drapes Point-bar elements

EXPANSIONAL EXPANSIONAL (Three bends) EXPANSIONAL (Three bends) EXPANSIONAL EXPANSIONAL
(Three bends) Continuous mud drapes Discontinuos mud drapes Continuous channels Point-bar elements

L
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Fluvial meander-belt reservoir modelling using multi-point statistics
conditioned on analogue-based forward stratigraphic models
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« The workflows that are being developed as a part of this research are applicable to different MPS
algorithms (SNESIM, DEESSE) through a hierarchical approach to facies modelling. The comparison
between the different MPS algorithms considered in this study enables quantification of their
performance in modelling different types of fluvial successions.

« Simulations performed indicate that higher geological realism can be achieved with respect to the
reproduction of features that cause compartmentalization in reservoirs hosted in meandering fluvial
successions than those performed by conventional methods (Objects based, SIS, etc.). Realizations
show the following features:

1) Simulations reproduce curvilinear shapes, features that are very common meandering systems and
that SIS and other conventional methodologies fail to achieve.

2) Successful modelling of fining-upward trends in the vertical layers in a manner commonly observed in
nature.

« Itis desirable to use training images that incorporate repeated and reasonably homogeneous patterns
that are not located to specific places within the training images. Although MPS methods are commonly
believed to require stationarity to perform adequately, this study demonstrates that the incorporation of
certain levels of non-stationarity in the training images can deliver realistic simulation results. This is for
tworeasons:

1) The training images used in this exercise include a sufficiently high proportion of patterns that can be
captured by the algorithm.

2) The use of appropiate auxiliary-variable maps which succesfully adjust the population of
categories/facies in the simulation grid for a given trainingimage.

« The hierarchical approach involves the use of different auxiliary variables (probability maps and rotation
maps). Special attention should be given to the probabilities assigned to each category and depending
on the selected method (SNESIM or DEESSE) the parametization process can differ.

« Realizations have been assessed both qualitatively and quantitatively against 1) the training images
themselves, and 2) known examples of high-sinuosity river architecture.

« Both SNESIM and DEESSE algorithms are able to reproduce curvilinear shapes, channelized shapes and
fining-upward trends.

» However SNESIM and DEESSE fail to incorporate horizontal trends (expansion-related-fining-outward,
counter-point-bar fining) that exist in the training images although application of auxiliary variables and
multiscale modelling approaches were attempted to reproduce some of these features.

« In addition, difficulties have emerged in setting up the most appropriate simulations parameters in both
SNESIM and DEESSE. Therefore, it is desirable to establish modelling recipes that facilitate simulation set-
up; this can be achieved by pairing parameter sets with each training image used in the simulations.

 Asisthe case for the construction of the auxiliary-variable maps, the building of the training image is a crucial
step: the difficulty in sourcing appropriate training images is a perceived barrier in the uptake and use of MPS
methods for reservoir modelling.

 This research offers to the user the selection of different training images with varying levels of sedimentary
heterogeneity at multiple scales and with regards to their distribution in meandering river systems that have
different behaviours.
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