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Abstract

New technology now enables high-resolution measurement of turbidity currents. New data can answer key questions, such as what flow modes
exist for field-scale turbidity currents? How important is the trigger in controlling flow behaviour compared to grain size? We analyse direct
measurements of turbidity currents from eight locations worldwide (water depths: 65-2300 m). We test whether commonalities in flow mode
exist, independent of location, thickness, velocity and duration. Normalised time-velocity plots reveal three distinct flow modes. Type 1 is a
rapid increase in velocity (first 5-10% of the flow) followed by an exponential deceleration. Type 2 is a steady increase in velocity (first 30-
50% of the flow), followed by a similar waning decline. Like Type 1, Type 3 exhibits a rapid peak in velocity; however, the exponential
decline is interrupted by a near-constant velocity for ¢.80% of the flow, which then drops off.

Canyons with coarse axial sediments (<10% mud) and oceanographic-triggers feature Type 1 flows. Canyons directly linked to hyperpycnal
rivers feature Type 2 flows, where sediments comprise ¢.10-40% mud. Type 3 flows are also linked to rivers, but are not directly fed by
sediment-laden river water. Unlike Type 1 and 2 flows which are <22 hours long, Type 3 flows last several days. High mud contents (>60%)
permit Type 3 flows to sustain at low velocities (0.2-0.8 m/s). We suggest that triggers and grain size are equally important controls on setting
up flow mode, but that the latter is more significant further away from the source.
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Repeat mapplng shows interaction of flows W|th the seafloor Sumner and Paull (2014) flew an ROV through a flow!

The ROV experiences a ‘black out’ as it is encased
within the relatively dense basal layer.

Multlbeam 0N ' S

16:32:32.83 E[ L Ei L dT L ﬁ‘ L % L ‘|D
J D172_B 3 Scale Meters




Sites where turbidity currents have been measured
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... from direct measurements of turbidity currents at water depth from 65 m to 2300 m
Azpiroz-Zabala et al., 2017
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Var Canyon Sites where turbidity currents have been measured in detail
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Velocity/maximum velocity
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.. any commonalities in flow modes: location, flow thickness, velocity and duration?

. How important is the trigger in controlling flow behaviour compared to grain size?
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... Normalised time-velocity plots reveal three distinct flow modes

Type-1 Flow: Sawthoot Type-1 Flow: Sawthoot
near instantaneous rise, followed by gradually waning flow near instantaneous rise, followed by gradually waning flow
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Exponential fit:

From previous studies: first 30% of Congo CanyonFlow From previous studies:
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Var Canyon (Khripoundoff et al., 2012) Congo Canyon (Cooper et al., 2012)

Cendrawasih Bay (Orange et al., 2010) Cendrawasih Bay (Orange et al., 2010)
Hueneme (Xu et al.,, 2010)

Monterey (Xu et al., 2012; 2014)
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Type-2 Flow: Symmetric
rapid rise mirrored by a rapid decline

From previous studies:
Var Canyon (Khripoundoff et al., 2012)

Gaoping (Liu et al., 2012)
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Time from begin / flow duration

Type 2 is a steady increase in velocity
(first 30-50% of the flow), followed by
a similar waning decline

Type-3 Flow: Plateau-Like
near instantaneous rise, followed by steady plateau and then rapid
decline
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From previous studies:

Congo Canyon (Cooper et al., 2012)
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Like Type 1, Type 3 exhibits a rapid peak in velocity;
however the exponential decline is interrupted by a
near-constant velocity for c.80% of the flow,

which then drops off




The most detailed direct measurement of velocities within oceanic turbidity currents

Azpiroz-Zabala et al., 2017
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Velocity Profles _Peak Speed Profiles

Normalised Time-Velocity Profiles
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West Papua: non-normalised plot ...any similarities?
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* Non-normalised vs normalised time-velocity at different locations worldwide for different
settings

« canyons with coarse axial sediments (<10% mud) and thought to by oceanically triggered,;

« canyons directly linked to hyperpycnal rivers where sediments comprise mud and sand in
different percentage;

« canyons linked to rivers, but not directly fed by sediment-laden river water.

« triggering mechanism of turbidity currents;
« grain size of the deposits transported by turbidity currents;
» thickness, velocity and density of turbidity currents.
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