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Abstract

Declining conventional hydrocarbon reserves have triggered a shift in exploration of energy-rich Australian basins towards unconventional
sources, such as coal seam and shale gas, as well as thermal energy from enhanced geothermal systems (EGS). Unconventional play and EGS
viability often depends on secondary permeability due to interconnected natural fractures that commonly exert a prime control over absolute
permeability due to degraded primary permeability. Structural permeability of the Northern Perth, South Australian Otway, and Northern
Carnarvon basins are characterised via an integrated approach combining geophysical wellbore logs, seismic attribute analysis and detailed
structural descriptions of core and outcrop. Integration of these methods allows for identification of faults and fractures at a range of scales,
providing crucial permeability information. This study raises three significant scientific questions: 1) What are the main factors controlling
fracture reactivation in Australian basins? 2) Can 3D seismic attributes be used to identify fractures in the subsurface beyond the wellbore? 3)
Avre electrically conductive fractures in image logs actually open to fluid flow? We demonstrate distinct correlations between aligned natural
structures identified in 3D seismic attribute analysis and natural fractures identified through interpretation of electrical resistivity image logs,
implying that similar features at different scales are being identified. Fracture reactivation within the basins, in particular the Otway and
Carnarvon basins, is demonstrated to be complex, depending not only on the in-situ stress regime but also fracture fills and pre-existing local
and regional structures. Natural fractures identified on image logs as being electrically conductive are generally assumed to be hydraulically
conductive. However, core from the Otway Basin shows open fractures are rarer than image logs indicate, likely due to the presence of fracture
filling siderite, an iron-carbonate that may cause fractures to appear hydraulically conductive on image logs. The techniques demonstrated in
several case studies represent an effective method for assessing regional structural permeability with various levels of data availability.
Basinwide structural permeability is constrained using a variety of data, ranging from predominantly image logs supported by 3D seismic, to
performing a basin-wide assessment using image logs, 3D seismic, core, and outcrop studies.
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Structural Permeability: South Australian Otway Basin:

100000 Aim to identify natural fractures in the sub-surface of energy rich Australian Sedimentary basins.
* A secondary permeability provided by structure, generally 10000- ¢ An integrated approach using wellbore logs, seismic attribute analysis, and detailed structural geology.
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Question 1) Can 3D seismic attributes identify fractures?

¢ Distinct natural structural fabrics are observed on dip-steered, median-filtered 3D sesmic from three Australian Basins
e Observed structural fabrics are composed of sub-seismic amplitude scale faults and fractures

e Large scale faults are easily matched to prominent attribute features, however, the same cannot be done for
smaller-scale features on the attribute displays:

e Structural fabrics are identified as: A

Question 2) Factors controlling reactivation in Australian basins:
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o Fractures form and reactivate in response to factors including
19 50 00°S

Reactivation can be modelled when these are known, or
through using idealised relationships.

Predictions of fracture reactivation are made for each basin,
however, thisonly allows for limited explanation of identified

fracture characteristics. 19.55.00°S |

CASE STUDIES
Northern Carnarvon Basin:

3D seismic attributes draped across the top Barrow Group
horizon on the HC_93 3D seismic survey.

(A) Depth to the top
Barrow Group horizon
(in two-way time)
showing well locations
within the dataset and
locations of faults

s

N

e I
uany

A

Highlighted similaity discontinuities
matching fault in amplitude display
Highlighted smaller scale similarity discontinuities
representing similar features

Block diagram from the Carnarvon Basin showing the similarity atiribute
compared to seismic amplitude data: Large extensional normal faults are evident
in the amplitude data of the inline and crossline, however, these are not easily interpreted in the
amplitude z-slice (at 2140 msTWT) when compared to the minimum similarity attribute

(at 2900 msTWT, light values are highly similar while dark values are dissimilar), which clearly
highlights the large faults as well as smaller structural features not present in the amplitude data.

Investigated surveys clearly show attribute features to occur in the

same location

Attribute features, such as the high ridge values, and curvature
lineations, share orientations as

It is, therefore, likely that they are identifying a systematic geological ' 7

feature preserved within the data

Fracture orientations from
image log interpretation

Fracture orientations from
attribute mapped horizons
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Fracture orientations from both wellbore image log and seismic attribute
interpretation: Fracture orientations interpreted on attribute mapped surfaces in 3D seismic
surveys from each of the study areas are compared to fracture orientations interpreted on
electrical resistivity based image logs. Rose diagrams feature individual scales and display only
the fractures interpreted in the formation that was attribute mapped in each survey.

C | Bonaventure 3D: Similarity overlain with maximum
positive curvature.

Balnaves/Haselgrove:
Ridge enhancement g
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3D seismic attribute analysis highlights fault damage zones within the
studied surveys: (A) lineations and discontinuities on the overlain similarity and maximum
positive curvature attributes in the Northern Carnarvon Basin HC_93 survey show several areas
where attribute features are congregated around larger structural features in the attribute
display. Areas further removed from these are seen to lack the lineations or discontinuities likely
to represent faults and fractures, and so are likely to be largely undeformed. The same is seen
in the Otway Basin Balnaves/Haselgrove seismic survey (B) and in the Northern Carnarvon
Basin Bonaventure seismic survey (C). Bonaventure, however, can be seen to have many
curvature lineations and similarity discontinuities that run perpendicular to and between the
larger structural features.

Interpreted attribute features additionally occur at the same
strike orientations as natural fractures interpreted on image logs.

It is likely that these are similar geological features, being
observed distributed over different scales.

o Discontinuities in the similarity attribute
o Llinearridges on the ridge enhancement attribute
o Prominent lineations in curvature attributes

Systematic geological features should be represented
on multiple attribute displays, as observed.

Understanding the tectonics of a basin is essential for
understanding fracture orientations.
Regional Structure: Demonstrated well in the Carnarvon Basin
(see “Case Studies: Carnarvon Basin’).
Set 1 fractures are electrically conductive and strike
¢ sub-parallel to the in-situ siress regime. They are likely

Established power-law relationship of fractures allows formed (or reactivated) by the in-site stresses

for the correlation of similar features at different scales.

Set 2 fractures are electrically resistive and concentrated
in areas featuring large inversion structures. They paraliel
the inversion structures and are likely a result of the
compressional events that formed them.

10km

Highlighted Curvature Lineation
1 Low Data Quality Area (Due to Gas Chimneys)

3D seismic attributes draped across the top Barow
Group of the HC_93 3D survey, Carnarvon Basin. (A) Peak
values of the most positive curvature attribute overlaying the
minimum similarity attribute. (C) Lineations likely to represent
faults and fractures highlighted on the overlain attributes. Zones 0 0
of low data quality are outlined in red.
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Question 3) Are open fractures in image logs open to fluid flow?

o Electrically resistive fractures have been correlated with hydraulic conductivity.

L]
However, it could equally be explained by the presence of electrically conductive
® minerals such as siderite.
e Siderite is an iron carbonate often seen as a fracture filling cement in Australian basins
e Detailed understanding of fracture fills is therefore required.
. The Otway Basin is a prime example: Many non-optimally oriented fractures appear
conductive, and many optimally oriented fractures are not.
o Previous studies have shown fracture fills to be significantly stronger than the host rock. .
* Reactivation is therefore governed by the level of cementation along the fracture plane.
. Likelihood of reactivation depends not only on fracture orientation within the stress field, .
but also the nature of fracture closure.
Otway Basin core demonstrates that open fractures are rarer than image logs suggest
* (20% of observed fractures in core were open, 53% of observed fractures on image logs
are ‘open’).
o Oufcrop observations in the Victorian Otway Basin suggest that siderite is a pervasive
fracture fill throughout the basin (Right). p :
0 . S B Fractures observed in an
o 28% of identified fractures are sealed with siderite cement. outcrop of Otway Group .

sediments in theVictorian
Otway Basin: (A) heavily o
weathered fractures that appear

open at the surface and lack any

visible evidence of fracture fills,

Many fractures that appear open at surface are heavily weathered and may be
misidentified
e Halos around many open fractures suggest transport of iron rich fluids
The majority of identified siderite filled fractures are optimally oriented, and yet
remain sealed. but which may preserve fills
, Siderite is ideni‘ified in the Northern Perth Basin as a fracture fill, and is likely to exist in the (bBe)‘?:’rggne:g‘g :Siﬂe‘uﬁs“;d
Carnarvon Basin. fractures preferentially
o e . . : weathering; and, (C) hardened
. Itis I|keIY that many fractures on image logs are electrically, though not hydraulically, e S s
conductive. siderite filled and open fractures.
Care must be taken when using image logs to characterise fractures; physical samples
* from core or outcrop should be interpreted alongside image log interpretations where
possible.
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Interpreted natural fracture orientations in the four structural

Strike of all Fractures.
Identifed in Image Logs

Local Structure: Highlighted well in the Carnarvon Basin’s
Rankin Platfform And Dampier Sub-Basin (above) and the
Victorian Otway Basin (left).

Strike of Fault Adjacent
ell

domains of the Carnarvon Basin Presented as frameless rose diagrams scaled
to the largest dataset. (A) Rose diagram showing the strike orientation of all fractures
identified on image logs (including the predicted orientations for fracture formation
under the present-day in situ stress regime; solid red lines represent shear fractures and
dashed represent tension fractures) and rose diagramsshowing strike orientations of
electrically resistive (B) and electrically conductive (C) fractures.

Map of the location of wells featuring interpreted FMI logs in
the northern Carnarvon Basin’s Rankin Platform and Dampier
Sub-basin and the proximity of those wells to local structural features. Rose
diagrams are for fracture orientations from each well, compared to the strike
(red line) of the fault adjacent to that well. Well Brulimar-1 lacks a line due to
the low number of identified fractures

Rankin Platform and Dampier Sub-Basin
Fractures identified on electrical resistivity image logs
e from 10 petroleum wells are interpreted to occur at all
orientations, demonstrating no dominant trends.
o Reflect neither in-situ stress orientations no the dominant
structural trend of the basin. s e /
Can be seen to closely reflect the strike orientations of Lineation 4
adjacent structures.
Natural fracture populations may, therefore, be more
dependent on local structure than regional trends.

_ s

Bonaventure 3D
seismic fracture
orientations

Exmouth Plateau
image log fracture
o orientations

Investigator Sub-
Basin image log

Victorian Otway Basin

The Castle Cove Fault (Left) is a NE-SW striking normal
fault that has been inverted into a monocline.

Fracture orientations and densities change proximal to
the fault, from NNW-SSE strikes change to SW-NE strikes.
Proximal fractures share strike orientations with the fault,
and soare likely related to fault formation or reactivation.
Fracture density changes from 3.7 fractures/m distal to

e the fault, to 4.5 fractures/m proximal, possibly
representing a fault damage zone.

T80 47 (325)

3D seismic attributes draped across the top Barrow Group horizon
on the Bonaventure 3D seismic survey (A) Depth to the top Barrow Group
horizon (TWT) showing well locations. (B) Peak values of the most positive curvature
attribute overlaying the minimum similarity attribute. (C) Lineations likely to represent
faults and fractures highlighted on the overlain attributes. (D) Rose diagrams showing
the strike orientations of natural fractures identified on image logs from the Investigsator
Sub-basin and Exmouth Plateau, compared to those identified from attribute analysis
of the Bonaventure seismic dataset.

CONCLUSIONS

An integrated geological and geophysical approach utilising wellbore image log data, 3D seismic attribute
analysis, and observations of both core and outcrop is demonstrated to reliably identify natural fracture networks

Dongara Sandstone

e Does not produce a ‘one-size-fits-all’ model.
e Each basin is demonstrated to be unique, with different controls over both fracture initiation and reactivation.

Reactivation can become complex, with stimulation of existing fractures beingunlikely due to fracture fills
rendering existing fractures stress insensitive.

(4]

e Consider basins in isolation, using available data to make an independent assessment.
The outlined techniques represent an effective method for assessing structural permeability with varying elvels of
data availability.

It is unlikely that natural fracture orientations can be mapped in a simple and reasonable manner on a continental
scale, due to the number of variables involved in their formation and reactivation, including:

e Location,

e Structural development,

e Fracture fill,

e lithology,

e Proximity to local structures.

A general overview of the dominant fracture orientations (with respect to the in situ stress regime) for
each basin is presented in a simple form.

Detailed assessments of the fracture sets described can be found in Bailey et al., 2016.
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HC_93 seismic dataset.
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Map of the Northern Perth Basin Study Area: showing regional
structure, estimated maximum horizontal stress trajectory, and the location of
wells and 3D seismic data used in this study. The figure includes: (A) a rose
diagram showing the strike orientation of all fractures identified on image logs
(including the predicted orientationsfor fracture formation under the present-day
in situ stress regime; solid red lines represent shear fractures and dashed represent
tension fractures); and, (B) and (C) rose diagrams showing the strike orientations
of electrically conductive fractures.

Fractures identified
on image logs:
o

Irwin River Coal Measures

Fractures identified
on seismic attributes:
0

LEGEND
Approximate trace
of the Mountain

Bridge Fault
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Results of Seismic Attribute Processing from the Dongara North 3D

Survey: 3D seismic attributes for both timeslices and interpreted horizons
representing the Dongara Sandstone and Irwin River Coal Measures(A) Dongara
Sandstone showing the similarity attribute; (B) Dongara Sandstone showing the
maximum negative curvature attribute; (C) Dongara Sandstone showing the
maximum positive curvature attribute; (D) Irwin River Coal Measures showing the
similarity attribute; (E) Irwin River Coal Measures showing the maximum negative
curvature attribute; and, (F) Irwin River Coal Measures showing the maximum positive
curvature attribute. Rose diagrams represent strike orientations of fractures in these
formations identified on image logs and through attribute analysis. Blue squares
represent areas of particularly poor data quality.




