
Geostatistical Prediction of Reservoir Petrophysical Properties by Copula Based Dependence Models 

between Seismic Attributes and Petrophysical Properties* 
 

Martín A. Díaz Viera
1
, Arturo Erdely

2
, Raúl del Valle García

1
, Tatiana Kerdan

1
, and Francisco Mendoza-Torres

3 

 

Search and Discovery Article #70246 (2017)** 
Posted March 27, 2017 

 
*Adapted from oral presentation given at AAPG 2016 International Convention and Exhibition, Cancun, Mexico, September 6-9, 2016 

**Datapages © 2017 Serial rights given by author. For all other rights contact author directly. 

 
1Instituto Mexicano del Petróleo (IMP), Mexico City, Mexico (mdiazv@imp.mx) 
2FES Acatlán (UNAM), Mexico City, Mexico 
3Posgrado de Ciencias de la Tierra (UNAM), Mexico City, Mexico 

 

Abstract 

 

In the context of geological and petrophysical reservoir modeling proper prediction of petrophysical property spatial 

distributions is a crucial task because the correct estimation of reserves and the development and optimal exploitation of the 

reservoir heavily depend on it. Only in recent years, it has imposed on the oil industry a comprehensive and multidisciplinary 

approach that combines all available information sources such as core data, geological models, seismic surveys and well logs, by 

the application of geostatistical models in a systematic way. One of the most common ways to combine seismic data with well 

logs is to establish correlations between seismic attributes and petrophysical properties. These models are quite restrictive 

because in most cases they assume that variables follow a Gaussian distribution and a strong linear dependence exists between 

them. Moreover, also the classical multivariate geostatistical models as Cokriging and Sequential Gaussian simulation method 

(Parra and Emery, 2013) also consider these assumptions. A non-parametric (distribution-free) method is proposed, which does 

not assume linear dependence, but rather seeks to represent, reproduce and exploit the underlying dependency between attributes 

and petrophysical properties: a Bernstein copula dependence model that was successfully applied for petrophysical simulation at 

well log scale. The methodology consists of two steps: firstly, a dependence model between seismic attributes and petrophysical 

properties at well log scale is established and then this model is used to estimate (median regression approach) or to simulate 

(stochastic approach using simulated annealing) petrophysical properties to seismic scale. The application of the methodology is 

illustrated in a case study where the results are compared with sequential Gaussian method. 
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Introduction

Modeling the spatial distribution of petrophysical properties

in reservoir characterization is a crucial and difficult task due

to the lack of enough data and hence the degree of

uncertainty associated with it.

 For this reason, a stochastic simulation approach for the

spatial distribution of petrophysical properties has been

adopted.

 Seismic attributes have been extensively used as secondary

variables in static reservoir modeling for petrophysical

property prediction but usually assuming linear dependence

and Gaussian distribution (Parra & Emery, 2013).



Introduction

 Quite recently, copulas have become popular for being a

flexible means of representing dependency relationships in

the financial sector and applications are already emerging in

the field of geostatistics (Bardossy & Li, 2008) (Kazianka &

Pilz, 2010).

 A geostatistical simulation method, based on Bernstein

copula approach as a tool to represent the underlying

dependence structure between petrophysical properties and

seismic attributes, is proposed.



Introduction

 The procedure basically consists of applying the simulated

annealing method with a joint probability distribution model

estimated by a Bernstein copula in a completely non-

parametric fashion (Hernández-Maldonado, Díaz-Viera, &

Erdely, 2012).

 The method has the advantages of not requiring linear

dependence or a specific type of distribution.

 The application of the methodology is illustrated in a case

study where the results are compared with sequential

Gaussian co-simulation method.



Methodology

• The main goal of this work

• show the application of a Bernstein copula-based spatial

stochastic co-simulation (BCSCS) method for petrophysical

property predictions using seismic attributes as secondary

variables and its

• compare with the classical Sequential Gaussian co-

simulation (SGCS) method



Sequential Gaussian co-simulation

(SGCS)

• Usually this method is applied with a linear model of

coregionalization (Chiles & Delfiner, 1999) which is mostly

unnatural, forced, very complicated and difficult to establish.

• The method assumes the existence of very strong linear

dependence between primary and secondary variables,

which is its main assumption and at the same time its main

drawback.

• Here we choose to use an alternative variant, the Markov

Model, given in (Chiles & Delfiner, 1999, p. 305) and

implemented in SGeMS (Remy, Boucher, & Wu, 2009).



Bernstein copula-based spatial stochastic 

co-simulation (BCSCS)

• The procedure consists of two stages:

1. A dependence model, using a Bernstein copula, is

established from which a number of sample values are

generated.

2. A stochastic spatial simulation is performed using a

simulated annealing method with a variogram model and a

bivariate distribution functions as objective functions

(Deutsch & Cockerham, 1994), (Deutsch & Journel, 1998).



Copula-based dependence modeling

• Sklar (1959) proved that there exists a function

𝐶𝑋𝑌: [0,1]2→ [0,1] such that

𝐻𝑋𝑌 𝑥, 𝑦 = 𝐶𝑋𝑌(𝐹𝑋 𝑥 , 𝐺𝑌 𝑦 )

• 𝐶𝑋𝑌 is called copula function associated to (𝑋, 𝑌) and

contains all the information about the dependence

relationship between 𝑋 and 𝑌 , independently from their

marginal probabilistic behavior



Copula-based dependence modeling

• Some copula function properties:

• 𝐶 𝑢, 0 = 0 = 𝐶(0, 𝑣)

• 𝐶 𝑢, 1 = 𝑢, 𝐶 1, 𝑣 = 𝑣

• 𝐶 𝑢2, 𝑣2 − 𝐶 𝑢2, 𝑣1 − 𝐶 𝑢1, 𝑣2 + 𝐶(𝑢1, 𝑣1) ≥ 0 if  

𝑢1 ≤ 𝑢2, 𝑣1 ≤ 𝑣2

• 𝐶 is uniformly continuous on its domain [0,1]2.



Copula-based dependence modeling

• The word copula is a Latin noun that means “A link, tie,

bond”

• Copula function is a flexible tool for building joint

probability distributions

• Univariate models for the random variables of interest and

the copula function may be chosen separately

• There are parametric, semi-parametric and non-parametric

approaches.

• Particularly appropriate for non-linear dependencies



Copula-based dependence modeling

• When 𝐹𝑋 and 𝐺𝑌 are known and 𝐻𝑋𝑌 is unknown, if

{ 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 } is an observed random sample from

(𝑋, 𝑌) , the set { 𝑢𝑘 , 𝑣𝑘 = 𝐹𝑋 𝑥𝑘 , 𝐺𝑌 𝑦𝑘 ∶ 𝑘 =

1,… , 𝑛} would be an observed random sample from (𝑈, 𝑉)
with the same underlying copula 𝐶 as 𝑋, 𝑌 , and since 𝐶 =
𝐹𝑈𝑉 we may use the 𝑢𝑘 , 𝑣𝑘 values (called copula

observations) to estimate 𝐶 as a joint empirical distribution:

 𝐶 𝑢, 𝑣 =
1

𝑛
 

𝑘=1

𝑛

1{𝑢𝑘 ≤ 𝑢 , 𝑣𝑘 ≤ 𝑣}

• Strictly speaking, the estimation  𝐶 is not a copula since it is

discontinuous and copulas are always continuous.



Copula-based dependence modeling

• 𝐹𝑋 and 𝐺𝑌 are estimated by univariate empirical distribution

functions:

 𝐹𝑋 𝑥 =
1

𝑛
 

𝑘=1

𝑛

1 𝑥𝑘 ≤ 𝑥
 𝐺𝑌 𝑦 =

1

𝑛
 

𝑘=1

𝑛

1{𝑦𝑘 ≤ 𝑦}

• Now the set of pairs { 𝑢𝑘, 𝑣𝑘 =  𝐹𝑋 𝑥𝑘 ,  𝐺𝑌 𝑦𝑘 ∶ 𝑘 =

1,… , 𝑛} is referred to as copula pseudo-observations.



Copula-based dependence modeling

• 𝐹𝑋 and 𝐺𝑌 are estimated by univariate empirical distribution

functions:

 𝐹𝑋 𝑥 =
1

𝑛
 

𝑘=1

𝑛

1 𝑥𝑘 ≤ 𝑥
 𝐺𝑌 𝑦 =

1

𝑛
 

𝑘=1

𝑛

1{𝑦𝑘 ≤ 𝑦}



Copula-based dependence modeling

• 𝐹𝑋 and 𝐺𝑌 are estimated by univariate empirical distribution 

functions (Pérez & Fernández-Palacín (1987) :



Copula-based dependence modeling

• The empirical copula is defined as the following function

𝐶𝑛: 𝐼𝑛
2 → [0,1], where 𝐼𝑛 = {

𝑖

𝑛
∶ 𝑖 = 0,… , 𝑛}, given by:

𝐶𝑛

𝑖

𝑛
,
𝑗

𝑛
=

1

𝑛
 

𝑘=1

𝑛

1{𝑟𝑎𝑛𝑘 𝑥𝑘 ≤ 𝑖 , 𝑟𝑎𝑛𝑘 𝑦𝑘 ≤ 𝑗}

• where 𝐶𝑛 is not a copula but it is an estimation of the

underlying copula 𝐶 on the grid 𝐼𝑛
2 that may be extended to a

copula on [0,1]2 by means of, for example, a polynomial

approximation.



Copula-based dependence modeling

• The empirical copula is defined as 𝐶𝑛: 𝐼𝑛
2 → [0,1], where

𝐼𝑛 = {
𝑖

𝑛
∶ 𝑖 = 0,… , 𝑛}, given by:

𝐶𝑛

𝑖

𝑛
,
𝑗

𝑛
=

1

𝑛
 

𝑘=1

𝑛

1{𝑟𝑎𝑛𝑘 𝑥𝑘 ≤ 𝑖 , 𝑟𝑎𝑛𝑘 𝑦𝑘 ≤ 𝑗}



Copula-based dependence modeling

• As proposed in (Sancetta & Satchell, 2004), using Bernstein

polynomials leads to what is known as a Bernstein copula non-

parametric estimation  𝐶: [0,1]2→ 0,1 given by:

 𝐶 𝑢, 𝑣 =  

𝑖=0

𝑛

 

𝑗=0

𝑛

𝐶𝑛

𝑖

𝑛
,
𝑗

𝑛

𝑛
𝑖

𝑢𝑖(1 − 𝑢)𝑛−𝑖
𝑛
𝑗 𝑣𝑗(1 − 𝑣)𝑛−𝑗



Copula-based dependence modeling

• As summarized in (Erdely & Diaz-Viera, 2010) in order to

simulate replications from the random vector (𝑋, 𝑌) with the

dependence structure inferred from the observed data

{ 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 } we have the following algorithm:

1. Generate two independent and continuous Uniform (0,1)
random variates 𝑢 and 𝑡.

2. Set 𝑣 = 𝑐𝑢
−1(𝑡) where 𝑐𝑢 𝑣 =

𝜕  𝐶(𝑢,𝑣)

𝜕𝑢
.

3. The desired pair is 𝑥, 𝑦 =  𝑄𝑛 𝑢 ,  𝑅𝑛(𝑣) where  𝑄𝑛 and
 𝑅𝑛 are empirical quantile functions for 𝑋 and 𝑌, respectively.



The general workflow 

• The general workflow is as follows: 

1. Univariate data analysis, 

2. Bivariate dependence analysis, 

3. Variography analysis, 

4. Simulations.



Case study

• Data used in the case study are from a deep water reservoir

in the Gulf of Mexico.

• The data consist of a total porosity well-log from a well and

seismic attribute (P-impedance) obtained in a vertical

(inline) section.

• The well-log has a sample interval of 0.1 m.

• The section has a length of 412.5 m and covers an interval of

336.4 m in depth and was chosen so that the well was

located in the middle of it.



Case study

Vertical (inline) section with P-impedance as a result of seismic inversion. The color scale represents impedance

values. In the middle of the section two logs are plotted along a well: in yellow P-impedance and in green total

porosity.
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Univariate data analysis

P

h

i

T

I

p

log scale 1m  scale seismic scale

4059 337 60



Bivariate dependence analysis

well-log
scale

one-meter
scale

seismic
scale

1m_BCS

Spearman -0.589 -0.477 -0.361 -0.576

Pearson -0.711 -0.657 -0.529 -0.703

log scale

1m  scale

seismic scale

1m  scale

simulation
4059

337

60

337



Variography analysis

PhiT-upscaled Ip-upscaled Ip-seismic



Simulations

Features SGCS BCSCS

Grid 33x60x1

Variogram model 

of primary variable 

spherical, nugget= 0.0002, 

structure contribution=0.0016, 

ranges: max.=160, med.=50, min.=1, 

angles: x=90, y=0, z=0

Dependence Model Corr. coefficient 

-0.657

Bernstein copula 

model

Software SGEMS SASIM(GSLIB)



Simulations

SGCS                                                BCSCS

X-direction (m)
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Simulation Comparison

S

G

C

S

B

C

S

C

S

Stat. SGCS BCSCS

n 1980 1980

Min. 0.1106 0.121

1st. Q. 0.2373 0.2375

Med. 0.2737 0.2681

Mean 0.2665 0.2662

3rd. Q. 0.297 0.2969

Max. 0.3406 0.3903

Var. 0.0019 0.0017



Simulation Comparison
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Comparison

Features SGCS BCSCS

Linear Yes No

Parametric Yes No

Transformation Yes No

Computational cost Lower Higher



Final remarks

• A Bernstein copula-based spatial stochastic co-simulation

(BCSCS) method presented in this paper possess several

advantages over the classical sequential Gaussian co-

simulation (SGCS), among others:

• Does not require of a strong linear dependence

• Captures and reproduces the existing dependence

• Is non-parametric (does not need a specific distribution)

• Reproduces the variability and the extreme values.

• Does not need to make back transformations



Future work

• Used a linear combination of attributes (principal component

and factorial analysis).

• A multivariate copula with three or more variables.

• 3D extension, but it depends on the computing power

available.

• A simpler and efficient alternative, the median regression

approach
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