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Abstract

In the context of geological and petrophysical reservoir modeling proper prediction of petrophysical property spatial
distributions is a crucial task because the correct estimation of reserves and the development and optimal exploitation of the
reservoir heavily depend on it. Only in recent years, it has imposed on the oil industry a comprehensive and multidisciplinary
approach that combines all available information sources such as core data, geological models, seismic surveys and well logs, by
the application of geostatistical models in a systematic way. One of the most common ways to combine seismic data with well
logs is to establish correlations between seismic attributes and petrophysical properties. These models are quite restrictive
because in most cases they assume that variables follow a Gaussian distribution and a strong linear dependence exists between
them. Moreover, also the classical multivariate geostatistical models as Cokriging and Sequential Gaussian simulation method
(Parra and Emery, 2013) also consider these assumptions. A non-parametric (distribution-free) method is proposed, which does
not assume linear dependence, but rather seeks to represent, reproduce and exploit the underlying dependency between attributes
and petrophysical properties: a Bernstein copula dependence model that was successfully applied for petrophysical simulation at
well log scale. The methodology consists of two steps: firstly, a dependence model between seismic attributes and petrophysical
properties at well log scale is established and then this model is used to estimate (median regression approach) or to simulate
(stochastic approach using simulated annealing) petrophysical properties to seismic scale. The application of the methodology is
illustrated in a case study where the results are compared with sequential Gaussian method.
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Introduction

s Modeling the spatial distribution of petrophysical properties
In reservoir characterization is a crucial and difficult task due
to the lack of enough data and hence the degree of
uncertainty associated with it.

¢ For this reason, a stochastic simulation approach for the
spatial distribution of petrophysical properties has been
adopted.
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Introduction

¢ Quite recently, copulas have become popular for being a
flexible means of representing dependency relationships in
the financial sector and applications are already emerging in
the field of geostatistics (Bardossy & Li, 2008) (Kazianka &
Pilz, 2010).

% A geostatistical simulation method, based on Bernstein
copula approach as a tool to represent the underlying




Introduction

¢ The procedure basically consists of applying the simulated
annealing method with a joint probability distribution model
estimated by a Bernstein copula in a completely non-
parametric fashion (Hernandez-Maldonado, Diaz-Viera, &
Erdely, 2012).

¢+ The method has the advantages of not requiring linear
dependence or a specific type of distribution.




Methodology

The main goal of this work

show the application of a Bernstein copula-based spatial
stochastic co-simulation (BCSCS) method for petrophysical
property predictions using seismic attributes as secondary
variables and its

compare with the classical Sequential Gaussian co-
simulation (SGCS) method




Sequential Gaussian co-simulation
(SGCS)

« Usually this method Is applied with a linear model of
coregionalization (Chiles & Delfiner, 1999) which is mostly
unnatural, forced, very complicated and difficult to establish.

 The method assumes the existence of very strong linear
dependence between primary and secondary variables,
which is its main assumption and at the same time its main

drawback.
« Here we choose to use an alternative variant, the Markov




Bernstein copula-based spatial stochastic
co-simulation (BCSCS)

» The procedure consists of two stages:

1. A dependence model, using a Bernstein copula, Is

established from which a number of sample values are
generated.

2. A stochastic spatial simulation i1s performed using a




Copula-based dependence modeling

« Sklar (1959) proved that there exists a function
Cxy:[0,1]%— [0,1] such that

Hyy(x,y) = Cxy(Fx(x), Gy (y))

e Cyy Is called copula function associated to (X,Y) and




Copula-based dependence modeling

 Some copula function properties; ~ “*“"

e C(u,0)=0=C(0,v)



Copula-based dependence modeling

The word copula iIs a Latin noun that means “A link, tie,
bond”

Copula function i1s a flexible tool for building joint
probability distributions

Univariate models for the random variables of interest and
the copula function may be chosen separately

There are parametric, semi-parametric and non-parametric
approaches.




Copula-based dependence modeling

« When Fy and Gy, are known and Hyy IS unknown, if
{(x1,v1), .. , (x5, ¥,)} 1S an observed random sample from
(X,Y) , the set {(uvi) = (Fx(xx),Gy(yi)) : k=
1,...,n} would be an observed random sample from (U, V)
with the same underlying copula C as (X,Y), and since C =
Fy,y we may use the (ug,v,) values (called copula
observations) to estimate C as a joint empirical distribution:




Copula-based dependence modeling

e Fy and Gy are estimated by univariate empirical distribution
functions:

n n
_ 1 _ 1
Fx(x) = m z lix, <x) Gy(y) = - z Ly, <97
k=1 k=1

« Now the set of pairs {(u, v) = (F;(xk),f;;(yk)) k=




Copula-based dependence modeling

e Fy and Gy are estimated by univariate empirical distribution
functions:

n n
_ 1 _ 1
Fx(x) = m z lix, <x) Gy(y) = - z Ly, <97
k=1 k=1

=




Copula-based dependence modeling

e [y and Gy are estimated by univariate empirical distribution
functions (Pérez & Fernandez-Palacin (1987) :

Gl = Y 5 (o +aun) ()t -

k=0

Porosidad (X) Permeabilidad (Y)




Copula-based dependence modeling

« The empirical copula is defined as the following function
C,: 12 = [0,1], where I, = {% :i=0,...,n}, given by:

i j\ 1w
Ch, E ,E = E kZl 1{rank(xk) <i,rank(yy) < j}

« where C,, i1s not a copula but it is an estimation of the

underlying copula C on the grid 12 that may be extended to a
> :




Copula-based dependence modeling

« The empirical copula is defined as C,:1? — [0,1], where
i . :

i j\ 1w
Ch, E ,E = E kZl 1{rank(xk) <i,rank(yy) < j}




Copula-based dependence modeling

« As proposed In (Sancetta & Satchell, 2004), using Bernstein
polynomials leads to what is known as a Bernstein copula non-
parametric estimation C: [0,1]%2— [0,1] given by:

C~(U, V) = . Z C, (% ,%) (?) ui(]_ _ u)n—i(?) Uj(l _ U)n_j




Copula-based dependence modeling

* As summarized in (Erdely & Diaz-Viera, 2010) in order to
simulate replications from the random vector (X,Y) with the
dependence structure inferred from the observed data

{(x1, V1), - , (x5, ¥,,)} we have the following algorithm:

1. Generate two independent and continuous Uniform (0,1)
random variates u and t.




The general workflow

» The general workflow is as follows:

1.
2.
3.
4.

Univariate data analysis,
Bivariate dependence analysis,
Variography analysis,

Simulations.




Case study

« Data used in the case study are from a deep water reservoir
In the Gulf of Mexico.

» The data consist of a total porosity well-log from a well and
seismic attribute (P-impedance) obtained In a vertical
(inline) section.

» The well-log has a sample interval of 0.1 m.
» The section has a length of 412.5 m and covers an interval of
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Variography analysis
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Simulations

Features SGCS BCSCS
Grid 33x60x1
Variogram model spherical, nugget= 0.0002,
of primary variable structure contribution=0.0016,
ranges: max.=160, med.=50, min.=1,
angles: x=90, y=0, z=0




Simulations
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Simulation Comparison
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Comparison

Features SGCS BCSCS
Linear Yes No
Parametric Yes No
Transformation Yes No




Final remarks

A Bernstein copula-based spatial stochastic co-simulation
(BCSCS) method presented in this paper possess several
advantages over the classical sequential Gaussian co-
simulation (SGCS), among others:

Does not require of a strong linear dependence
Captures and reproduces the existing dependence
Is non-parametric (does not need a specific distribution)




Future work

« Used a linear combination of attributes (principal component
and factorial analysis).

« A multivariate copula with three or more variables.

« 3D extension, but it depends on the computing power
available.

A simpler and efficient alternative, the median regression
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