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Abstract 
 
Permeability measurements were obtained on 24 intact plugs from two wells of different thermal maturity in the Eagle Ford in South Texas. 
Ten plugs were taken from a low thermal maturity (Ro = 0.62) well, and 14 from a high thermal maturity (Ro = 1.45) well. Thin sections and x-
ray diffraction data were obtained for all samples from plug end-trims. The permeability of the marls (defined as having <35% clay and 35–
65% carbonate by volume) which is on the order of 1 to 100 nD, was observed to increase with increasing calcite volume in laminations, but no 
fractures were observed in any of the marl samples. The high permeability (>200 nD) of the limestones (defined as having >65% carbonate by 
volume) was also seen to increase with increasing calcite volume, reflecting an increasing volume of fractures. Scanning electron microscope 
(SEM) microscopy of the plugs used for permeability measurement and lower-maturity outcrop samples (Ro = 0.4) shows that all of the 
intergranular pores in the Eagle Ford, regardless of TOC, mineralogy or facies, contain hydrocarbon. The lowest maturity outcrop samples 
contain viscous bitumen migrating through pores, while thermally mature samples are filled with solid hydrocarbon, identified by visual 
kerogen analysis and solvent extraction as both bitumen and porous pyrobitumen. This solid organic matter effectively occludes primary pores 
like a diagenetic cement. The thermally-mature organic-matter cement is porous, but permeability is not directly related to the total organic 
carbon content. Most of the fractures in the limestone are the result of coring (do not contain either mineralization or solid hydrocarbons) but 
nonetheless illustrate the presence of a connected pore system once fractures form during the process of hydraulic fracturing. Fractures that are 
present in situ (contain mineralization and solid hydrocarbon) would be activated by hydraulic fracturing. The Eagle Ford is therefore a dual-
porosity system, with matrix storage feeding a network of progressively larger natural and induced fractures that carry hydrocarbons to the 
wellbore. The importance of choke management in the Eagle Ford, in which both matrix and natural fractures have stress-dependent properties, 
including permeability, is illustrated. 
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Summary

• Permeability measurements made on 36 intact samples 

from five wells in south Texas

• Permeability increases with increasing calcite volume

• The lowest maturity samples contain viscous bitumen 

migrating through pores

• Thermally mature samples are filled with solid 

hydrocarbon, identified by visual kerogen analysis and 

solvent extraction as both bitumen and porous 

pyrobitumen
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Summary, continued

• The hydrocarbons within the Eagle Ford have migrated 

within the rock effectively occluding primary pores like a 

diagenetic cement 

• Permeability decreases with increasing TOC

• Our results suggest that the Eagle Ford is a dual-porosity 

reservoir in which matrix storage feeds a network of 

progressively larger natural and induced, propped 

hydraulic fractures that carry hydrocarbons to the 

wellbore
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Background: Regional Depositional System

by J. Breyer and others (2015)
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Background: Lithology

J. Breyer and others (2015)
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Marls and Limestones

Increasing Calcite
Decreasing TOC
Permeability?

Marls: increasing lamination  Limestone

J. Breyer and others (2015)
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Permeability measurements

• Low viscosity, low compressibility supercritical fluids miscible with residual core liquids
• At steady state, both pumps move at an identical rate (within experimental error) 

creating a constant pressure differential across the core plug
• This experimental protocol is repeated at three different rates

Rosen et al. (2013)
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Permeability measurements

 36 measurements
 5 wells
 Varying maturity
 Porosity 

 Limestones 4 – 6%
 Marls 8 – 12%

Kosanke and Warren (2016)
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Permeability vs. Calcite Volume

After Kosanke and Warren (2016), Rosen et al. (2013)
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Permeability vs. Calcite Volume

J. Breyer and others (2015)
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Permeability vs. Mineralogy

Rosen et al. (2013)
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Lithology and TOC

Argillaceous Mudrock Trend
Calcareous Mudrock Trend J. Breyer and others (2015)
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Marl Matrix Organic Matter

• Ar-ion-milled end cuts from plugs and outcrop
• Environmental stage (liquid/viscous hydrocarbons)
• Secondary electron (SE) imaging
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Marl Matrix Organic Matter: Outcrop, Ro = 0.4

“Pre-oil” bitumen migrating through pores Kosanke and Warren (2016)
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Marl Matrix Organic Matter: Ro = 0.62

Bitumen “cement” with slit-shaped shrinkage pores Kosanke and Warren (2016)
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Marl Matrix Organic Matter: Ro = 1.45

Intergranular pores filled with porous pyrobitumen “cement”
Kosanke and Warren (2016)
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Controls on Permeability (small data set… ) 

Marls (Permeability < 115 nD)

Low TOC  < = 2 wt. %
Medium TOC  >2 < 4 wt. %
High >= 4 wt. %

TOC Permeability (nD) Permeability (nD) Permeability (nD) 
Means N Std. Dev.

TOC High 13.1 11 21.7
TOC Medium 39.1 6 44.5
TOC Low 41.2 2 40.7

Rock Type Permeability (nD) Permeability (nD) Permeability (nD) 
Means N Std. Dev.

Marl 17.3 8 25.3
Laminated 
Marl 33.8 7 47.8
Limestone 908.1 9 1940.9
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Marls and Limestones

Increasing Calcite
Decreasing TOC
Increasing Brittleness = Permeability

Marls: increasing lamination  Limestone

J. Breyer and others (2015)
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Microfractures Observed in Marls and Limestones

Microfractures produced by coring process
(no mineralization/pyrobitumen in fractures)
Very prevalent. 

Microfractures present in subsurface
(mineralization/pyrobitumen in fractures)
Rarely observed.

Marl (Sample 4-9, K = 75 nD) Limestone (Sample 4-14, K = 5944 nD)

Kosanke and Warren (2016)
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Permeability: Matrix and Fractures

Observed Outcrop-Scale Fractured
Observed Core-Scale Fractures

Observed Plug / 
Thin Section-Scale Fractures

FracturesMarl Matrix (Storage) Permeability
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Eagle Ford: Dual-Porosity Reservoir
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Stress Dependence: Choke Management

Fast drawdown rate produces more than a slow drawdown rate 
but eventually this trend reverses Rosen et al. (2013)
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Choke Management

• Fast drawdown rate initially produces more than a slow 
drawdown rate but this trend reverses 

• If the reservoir is produced at a rate faster than the matrix 
can resupply the fractures with fluids a large loss in 
permeability will result

• This is likely a significant factor contributing to the high 
decline rates seen in unconventional shale plays
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Conclusions

• Permeability measurements made on 36 intact samples 

from five wells in south Texas

• Permeability increases with increasing calcite volume –

likely due to increasing ‘brittleness’ and likelihood of 

fracturing
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Conclusions, continued

• The hydrocarbons within the Eagle Ford have migrated 

within the rock effectively occluding primary pores like a 

diagenetic cement 

• Permeability decreases with increasing TOC

• The Eagle Ford is a dual-porosity reservoir in which 

matrix storage feeds a network of progressively larger 

natural and induced, propped hydraulic fractures that 

carry hydrocarbons to the wellbore
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