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Abstract

This presentation will show how electrical borehole images, sometimes supported by Stoneley waveform data, have been used to identify
lithological facies within igneous rock formations as well as to characterize fracture systems, which can act as reservoirs in both geothermal,
and petroleum systems. Examples will be shown from Indonesia, Vietnam, Japan and the People’s Republic of China. Two case studies will
demonstrate how an analysis of the fracture type and knowledge of the orientation of fracture swarms was used to land wells and to optimize
production. This content was previously published at IPA and SPE meetings, but seems very pertinent to the subject of this GTW and has
therefore been offered for display.
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A nice analog!

Agglomerates
& lithic tuffs

- Lava flows

Facies variations
on Krakatoa

~ (core-image comparison work in Java area)



Gross lithology recognition
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Rock type and textures can be interpreted from the resistivity images



Dip-Fracture strike & dip computation
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After computing relative dip, need correction for borehole deviation



Bedded tuffs: very fine grain - non reservoir
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Lava flow

John Simmons, GSL photo library,
www.geolsoc.org.uk



Lava with low angle
joints & high angle
open fractures

Conductivity along joints due
to pyrite and does not indicate
production potential.

The high angle open fractures
produce oil

This image example from the
Carboniferous in North West China
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Case study; using images to resolve reservoir delineation
& development issues in West Java
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Kamojang Field

First exploration well in Kamojang area in 1926
Development started in 1964; 65 wells
Field now produces 140MW, 3 power plants

Bottom hole temperatures typically range from
230-255 degs C; depths to 5000’

Pressure 29-35 bars

Main production from faults and related fracture
zones in volcanic sediments
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Natural fractures; some production
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Mega fracture zone; main production
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Fracture strike (not NW-SE as expected)

Strike Histogram

Ref: True, N. Hemispherd

~ c7

57 samples *

% : Fracture type 1

L B

-
-

T TT T T T T T I T Y




Revised structural interpretation
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Recommended
well locations

All three wells came in
with good production;
>12MW’ s per well

(compares with field
average of <4MW'’s)




Quantifying fractures: width, porosity, fill

The electrical images provide information on fracture type
(natural/induced), density & direction

Stoneley Response from Shear Imager and Current Leakage
from electrical images combine for fracture width (Hornby)

The Stoneley response is sensitive to deep(>3m) open
fracture systems, meaning near borehole effects

Stoneley insensitive to fractures filled with mineral
alteration products

Electrical Images can yield porosity distribution
distinguishing primary, secondary & tertiary systems



Where

W=ceA*Rn’ *Rxo >

W = fracture aperture

b,e = constant from tool modeling

A = excess current divided by voltage and integrated along a line
perpendicular to the fracture trace

Rm = mud resistivity

Rxo = flushed zone resistivity

Fracture Aperture Calculation

Fracture
Aperture
Computation

Current leakage 1nto a fracture
increases as the formation
becomes more resistive and/or
the fracture becomes wider

It 1s also a function of mud
resistivity

Images need careful calibration



Archie: Resistivity is a map of the porosity
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Local variations in porosity distribution produce distinct histograms.

From Newberry et al, SPE 35158; Analysis of Dual Porosity Systems



A rare “open’ fracture at a highly fractured outcrop

Jointed and fractured granites,
Vung Tau, Mekong Basin




Most granite outcrops show thousands of
healed-tight joints




Tensile Shear & Natural Fractures: but how big?
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Vuggy fractures: candidate for production
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Vuggy, permeable fractures at outcrop

Note staining
showing natural
springs




Vuggy fractures, some clay mineral
bﬁa\lteration, with boundary fractures
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Vuggy fractures at outcrop; some clay
mineral alteration
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Brecciated fracture zone, heavily
altered with clays
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Brecciated fractures, heavily altered
‘with clays
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Integrated analysis
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Production Testing
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Conclusions

Images can help one distinguish igneous lithofacies

Examples of oil production in extrusive lava’s, coarser
agglomerates and intrusive granites

lgneous primary poro-perm characteristics poor, so
need enhancement through fracturing & dissolution

Images help determine natural vs. induced systems,
geomechanics, dip & azimuth, fracture density

Electrical Images & Shear Sonic Waveforms can be
combined to identify fracture width & fill

Primary porosity can be distinguished from Secondary
& Tertiary porosity in vuggy & fractured systems



Applications
ldentify zones of production in geothermal and O&G wells

Land wells at right angles to the strike of the fracture
swarms in the reservoir to optimize production

Average well production in the Kamojang Field
substantially increased from 3MW to 12MW (T. Huntoro,
H. Sumantri & P.M.Lloyd, IPA Transations, 1997)

Well production increased to a sustained 4,000 BOPD in
Vietham Basement Granite well, Ruby Field, (P.M. Lloyd, P.
Tandom & N. H. Ngoc, & Dr. H. D. Tjia, SPE paper 57324)

Lowering drilling risk in the top sections by deviating
trajectory parallel to the maximum horizontal



Improving Drilling Efficiency

® A well completed with
borehole deviated to

the NE or SW would \ Y
oPtimize the chances AN

of hitting open 4
fractures

® Drilling the upper
section with deviation
to the NW or SE
minimizes the
chances of borehole
collapse and stuck

pipe
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