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Abstract

An integrated petrographical and petrophysical study was carried out on a set of 20 carbonate core samples in Ordovician reservoirs with depth more than
5500 m, covering a wide range of lithologies and textures. In this study, various carbonate rock-types have been characterized, by integrating both
sediment-petrological and petrophysical data, including thin sections, porosity, permeability, low-field Nuclear Magnetic Resonance (NMR) and
Mercury-injection capillary pressure (MICP). Based on the petrographical and petrophysical analysis, 6 groups of rock types were identified, and each of
them characterized by a unique NMR signature: (1) Grainstone, (2) Packstone, (3) Wackstone, (4) Mudstone, (5) limestone with full-filled fractures and
(6) limestone with half-filled fractures. NMR T2 distributions were linked to pore body size and T2 logarithmic (T2Im) was calculated. It is apparent that
packstone, wackstone and mudstone of the carbonate reservoirs in this study, yield smaller pore body sizes (T2Im < 20 ms), as well as narrower pore
throats (average radius < 150 nm) and lower permeability values (typically below 0.1 mD). The grainstone samples yield bimodal T2 distributions, with a
first peak related to the cement matrix pores and a second peak related to intraparticle pores. The T2 distributions of limestone with fractures reflecting
larger pore sizes (T2Im > 90 ms) and higher permeabilities (up to 10 mD). Additionally, each rock type's NMR characters were tested under different
pressure, and their sensitive responses were analyzed, especially for the second peak of grainstone and limestone with fractures. For all samples,
permeability was inferred from NMR spectra using Schlumberger Doll Research (SDR) model. The study aims to develop an NMR-based approach to
characterize various carbonate rock-types, calibrated by geological and petrophysical analysis. The results allow an in depth understanding of the NMR
signal of each carbonate rock-type, and can be used as a guide to interpret NMR logging data.
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2 Geological Setting

An integrated petrographicaland petrophysicalstudy was carried out on a set of 25 @ Tahe Oilfieldis the largest Chinese Paleozoicmarine carbonate

carbonate core samples in Ordovician reservoirs with depth more than 5500 m,
covering a wide range of lithologies and textures. In this study, various carbonate
rock-types have been characterized by integrating both sedimentpetrological and

petrophysicaldata, including thin sections, porosity, permeability,Mercury-injection

capillarypressure (MICP), and low-field Nuclear Magnetic Resonance (NMR).
Based on the petrographicaland petrophysical analysis, 6 groups of rock types

were identified, each of them characterized by a unique NMR signature (1)

Mudstone, (2) Wackstone, (3) Packstone, (4) Grainstone, (5) Limestone with half-

filled fractures, and (6) Limestone with full-filled fractures NMR T, distributions

were linked to pore body size and Tylogarithmic (Tzlm)was calculated It is apparent
that packstone, wackstone and mudstone of the carbonate reservoirs in this study,
yield smaller pore body sizes (T2, < 25 ms), as well as narrower pore throats
(average radius < 150 nm) and lower permeability values (typically below 0.1 mD).
The grainstone samples yield bimodal T, distributions,with a first peak related to

the cement matrix pores and a second peak related to intraparticle pores. The T»

distributionsof limestone with fractures reflectinglarger pore sizes (T21m> 100 ms)
and higher permeability (up to 10 mD). Additionally, each rock type’s NMR
characters were tested under different pressure, and their sensitive responses were
also analyzed, especially for the second peak of grainstone and limestone with
fractures

The study aims to develop an NMR-based approach to characterize various
carbonate rock-types, calibrated by geological and petrophysical analysis The
results allow an in depth understanding of the NMR signal of each carbonate rock
type, and can be used as a guide to interpretNMR logging data.

1 Introduction
®Hydrocarbon exploration practices around the world have
demonstrated that deep layers of basins (those at depths >4,500
m) likely contain abundant hydrocarbon resources
®China has also initiated many oil and gas explorations in deep
layered strata, e.g. Tarim, Sichuan, Bohai Bay Basins
®Inherently complex and heterogeneous lithologies of carbonates
make characterizing them is a real challenge
@®Geological & petrophysical analysis can reveal pore structures
®The pore structure is a key parameter for knowing carbonate
®Geological analysis:
Core samples, Thin section, Scanning Electron Microscope...
® Petrophysical analysis:
Porosity, Permeability, Nuclear Magnetic Resonance (NMR)...
® NMR: Rapid, Non-Destructive, High Efficient and Economic...
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oilfield The main formationof this oilfieldis Ordovicianstrata,
buried at a depth of more than 5,500 meters.

® In the northern region (main area) of the Tahe Oilfield, the

main reservoirs are paleokarst reservoirs in the Lower- to
Middle-OrdovicianYijianfangand YingshanFormations

® In the southern region of Tahe Oilfield falls within the

peripheral slope area , and its Lower- to Middle-Ordovician
strataare covered by nearlyinsolubleUpper Ordovicianstrata,
includingcarbonatemudstones
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® Caves and vugs are the main storage spaces in Tahe Oilfield
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3 Materials and Methods

O 3.1Sampling

® Fouce on the tight carbonate area, avoiding the caves
ctures aro

and fra

O 3.2. Petrography

® Dunham Classification

® Mudstone, Wackstone
Packstone, Grainstone
Half-filled fracture
Full-filled fractrue

O 3.3. Petrophysics
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4 Results O
[0 4.1 Petrography
(1) Mudstone (2) Wackstone

Mudstone is mainly composed of Wackstone is formed in sedimentary
carbonate lime mud with particles
smaller than 10 pm. This mudstone

formed in quiet hydrodynamic conditions

and mostly occurs in the subfacies of
intra-platform depressions,
lime mud mounds, and interbank seas.

Thin sections reveal no evidence of

lagoons,

mudstone dissolution.

Mudstone

(3)Packstone

with plaster filler.

Grainstone 1s dominated by grain-supported, sparry calcite that fills the
It forms within sedimentary subfacies
produced in high hydrodynamic conditions, such as intra-platform shoals
and grain shoals. The particles and sparry cement in granular limestone
can easily be dissolved by meteoric water, thus forming the intra-granular
and inter-granular dissolution vugs that represent the mostideal hydrocarbon

spaces between particles.

reservoir spaces within the study area.

Packstone

(4) Grainstone

Packstone forms within sedimentary subfacies, such as tables, platform
internal reefs, and grain shoals. It is primarily granular to inter-granular,

Wackstone

QGrainstone

subfacies, such as the intra-platform
gentle slope and the intra-platform
shoal. It consists primarily of
carbonate lime mud and contains
some particles. In the observed cores,
most wackstone is dense , but some
contains open fractures.

(5) Limestone with full-filled fracture

(6) Limestone with half-filled fracture

The diagenesis processes in the carbonate rocks, including dissolution

and precipitation, occured frequently.In the groundwater flow active
horizon of the cracks are open,

stagnant flow state, crack is easy to pack by late calcite.

Full-filled fracture

0 4.2 Petrophysics

(1) Porosity and permeability

while in the horizon groundwater

=18
=21

-8
=17
19

Sample Diameter/c | Density/g* . o, |Permeabilit
Rock Type Number Length/cm m em3 Porosity/% y/mD
11 4.372 2.45 2.67 0.79 0.002
13 4.15 2.52 2.7 0.51 0.009
Mudstone
15 4.259 2.53 2.67 0.63 0.009
22 4.133 2.53 2.67 0.75 0.01
7 4.292 2.46 2.67 0.82 0.24
9 4.534 2.52 2.68 0.53 0.03
Wackstone 12 4.398 2.53 2.66 0.68 0.12
16 4.302 2.53 2.68 0.76 0.2
20 4.425 2.52 2.68 0.55 0.05
24 4.447 2.53 2.68 0.53 0.02
18 4.462 2.53 2.67 1.23 0.01
Packstone
21 3.72 2.52 2.67 1.37 0.01
2 5.045 2.48 2.67 0.95 0.06
4 4.395 2.53 2.66 0.89 0.15
) 5 3.953 2.52 2.67 0.82 0.07
QGramstone
6 4.385 2.53 2.66 0.9 0.2
23 4.464 2.53 2.65 1.31 0.39
26 4.418 2.53 2.65 1.17 0.28
3 4.533 2.53 2.67 0.83 0.44
Limestone with full-filled 10 4.368 2.53 2.68 0.56 0.11
fractures 14 4.293 2.53 2.67 0.53 0.2
25 4.408 2.53 2.66 0.44 0.05
iyl 8 4.992 2.48 2.64 2.15 4.36
17 4.106 2.53 2.65 1.89 1.69
fractures
19 4.347 2.52 2.65 1.67 1.28
(2) Mercury-injection capillary pressure (MICP)
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(3) Nuclear Magnetic Resonance (NMR)

Mudstone

Amplitude(v/v)
d + T

[
h

01

e

0.1 I 10 1000

T, 3t % [ (ms)

0.01

o

100

S
S

Grainstone

IS w
T i

Amplitude(v/v)
e

0.1 1 10 1000

T, 5l B 0 [ (ms)

100

10000

Amplitude(v/v)

Amplitude(v/v)

v
I

IS
T

w
i

[}
h

Wackstone

=)

.001

0.01 0.1

1 10
Tyl B [ (ms)

100

1000

10

w
If

IS
T

w
i

[S)
I

‘| Full-filled fracture

0
0.001

0.01 0.1

1 10
T, 3t 74 1 [ (ms)

100

1000

10

00

60 40 20 0
Half-filled fracture

Amplitude(v/v)

Packstone

.001

0.

01 0.1

1 10
T, 8 70 Fl(ms)

100

1000

10

Amplitude(v/v)

‘|Half-filled fracture

1 10
T, 3t 7 [ (ms)

100

1000

10

00



(4)NMR Under Pressure
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O 5.1 Porosity and permeability of different rock types
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6 Conclusion

(1)Based on Core samples observations and thin section
observations, six rock types were divided in this study,

including mudstone, wackstone, packstone, grainstone,
Limestone with full-filled fracture,

Limestone with half-filled fracture.

(2)Through the testing of nuclear magnetic resonance

T2 spectrum. Combined with the feature of mercury
injection, and then got the different pore size distribution
of rock facies. Aperture and further divided into the large
pore diameter and pore diameter and small aperture.

(3) Packstone, wackstone and mudstone of the carbonate
yield smaller pore body sizes (T2Im <20 ms), as well as
narrower pore throats (average radius < 150 nm) and
lower permeability values (typically below 0.1 mD).

The grainstone samples yield bimodal T2 distributions,
with a first peak related to the cement matrix pores and

a second peak related to intraparticle pores. The T2
distributions of limestone with fractures reflecting
larger pore sizes (T21m > 90 ms) and higher permeability.
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