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Abstract 

 

A new algorithm is proposed and calibrated for assessing the effect of organic matter on compaction, porosity generation, and porosity 

preservation in organic-rich fine-grained sediments at various maturities. The algorithm involves the addition of simple terms to the Athy-Law 

exponent relating porosity to effective stress in Terzaghi-like compaction models, which are often used in basin and petroleum systems models 

to calculate expulsion of water and petroleum from source rocks. The central concept in these models is that porosity is related to the difference 

between vertical lithostatic pressure and pore pressure, and pore pressure is calculated from a simple permeability model, either 0D or 1D. The 

new model presented here is empirical and requires calibration for the source rock of interest. It considers that because kerogen is softer than 

most inorganic grains, when in high concentration, it can lead to lower rock porosity prior to catagenesis. This part of the model was calibrated 

for the Green River Formation using log data at 600-700 m that shows porosity decreasing from 15-25% to about 7% as the kerogen volume 

fraction increases from negligible to 50 vol%. In addition, the new model was designed to consider that preservation of porosity created from 

kerogen conversion can be related to its geometric shape and the ductility of the surrounding mineral grains. Model results are shown for the 

ranges of residual kerogen porosities observed in source rocks. The model has been incorporated into TRESORS, a 0D simulator of source rock 

maturation and expulsion at both laboratory and geological conditions. 
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Common compaction modeling laws 
Athy (1930):   

Exponential decline of  

porosity with depth 

Terzaghi (1923):   

Exponential decline of porosity 

with effective stress (PL-P) 

Examples from Hantschel and Kauerauf, Fundamentals of Basin and Petroleum Systems Modeling, Springer, 2009  

PH       P      PL 
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Key questions for modeling porosity evolution 

How does porosity evolve in mixtures of brittle and ductile 

materials? 
Clay and kerogen are more ductile than quartz, silicates, and carbonates 

Related to the classical discussion of whether kerogen is load bearing or pore filling 

 

How does the porosity evolve with kerogen conversion? 
Conversion of kerogen to oil and gas creates void space amounting to 20-80 % of the 

kerogen volume depending on Hydrogen Index 

How much of this generated porosity is lost immediately and during subsequent burial? 

 
    Note:  The initial discussion uses Athy’s law as an example with the understanding that 

    compaction in the absence of organic matter is more complicated than a single exponential 
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Adjusting Athy’s Law for organic content 

𝜑 = 𝜑0𝑒−𝑎𝑑/(1−𝑘𝑛) 
 

𝜑 is porosity 

𝑑 is depth 

𝑎 is a compaction coefficient 

𝑘 is kerogen volume fraction 

𝑛 is an organic grain 

    compaction correction 
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Kerogen reduces porosity because it is softer 
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kerogen is 50 vol% 

 

 

DTCO is the sonic log compressional wave arrival time; gpt = gal/ton  2TOC 

Asymptotic limit of Young’s modulus is the same as for high-density polyethylene 
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Clay-quartz mixtures have analogous 
enhanced compaction 

Ductility of clay enables 

more deformation and 

compaction under lithostatic 

load corresponding to 

~6600 ft of burial 
 

 

From Linked-In PSA 
Webinar #5 by Rob Lander 
of UT Austin  

 

 



8 

Clay has a smaller effect on porosity than 
kerogen for the Green River Formation 

Clay mineral content determined by Schlumberger ELAN 

 

Clay is uncorrelated to anti-correlated with kerogen content depending on 

depth interval 

 

Porosity correlates weaker with clay than kerogen content 

 

Parameter fits including both kerogen and clay content are negligibly 

better than for kerogen alone 

   porosity = (a + b*clay)*exp(-c*kerogen)+d 
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Kerogen conversion modifies Athy’s Law 

Kerogen conversion creates porosity 
20-80% of kerogen volume, depending on HI 

A large fraction has pore diameters less than 100 nm 
 

Does this porosity cause a positive deviation from Athy’s law? 
It will not if the porosity is easily filled by rearrangement of surrounding mineral grains 

It will if the porosity is stable due to mineral bridges 

Compaction likely depends on ductility of mineral matrix (Fishman et al., 2012) 

Compaction efficiency likely depends on kerogen geometry (globular versus lenticular) 
 

Why do we care?  Compaction likely affects expulsion efficiency 
Generation of oil and gas increases organic volume by only ~20% at generation T & P 

Sorption capacity of kerogen may depend on applied lithostatic load 

Expulsion may depend on hydrocarbon saturation level of pore fluids (relative permeability) 



10 

Porosity generated is calculated simply from 
mass and volume balance 

    Generated porosity  

     𝜑k = R×(Ki/i  -Kr/r)  = R× Ki(1/i  -fr/r) 
 

R = density of rock  

i = density of immature kerogen 

r = density of residual kerogen 

Ki = mass fraction of immature kerogen  

Kr = mass fraction of residual kerogen = fr×Ki 

fr = mass fractional conversion of immature to  

      mature kerogen  

 

Vitrinite reflectance, %Ro 
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Measured and calculated porosities agree 
well for low applied stress 
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Mature source rock porosity is largely within 
residual organic matter 

From Sone and Zoback (2013) 
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Athy’s Law corrected for additional porosity 
from kerogen conversion 

𝜑 = 𝜑0𝑒−𝑎𝑑/(1−𝑘𝑖
𝑛)+ 𝜑𝑘𝑒−𝑏𝑑  

 
𝜑 is porosity 
𝜑0 is initial porosity at burial 
𝜑𝑘 is porosity from kerogen decomposition 
𝑑 is depth 
𝑎 is a mineral porosity compaction coefficient 
𝑘𝑖 is initial kerogen volume fraction 
    (perhaps labile kerogen only) 
𝑛 is an organic grain compaction correction 
𝑏 is a kerogen porosity compaction coefficient 
 
 6 wt% Type I kerogen  12.6 vol% 
 35% converted to residual kerogen  3.3 vol% 
 Single first-order reaction 
 𝜑0 = 0.6; 𝑎=0.0008; 𝑛=0.5; 𝑏=0.0002 
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Alternate and additional approaches provide 
better agreement for complex systems 

Use effective stress instead of depth 

Include a fracture pressure relief valve 

Include a residual irreducible baseline porosity 

1992 

     Example: 
𝜑 = 𝜑0𝑒−𝐾𝜀(𝑃𝐿−𝑃)/(1−𝑘𝑖

𝑛) + 𝜑𝑘𝑒−𝐾𝑘(𝑃𝐿−𝑃) + 𝜑𝑖𝑟 
 
 
 

 

𝜑𝑘 is porosity from kerogen conversion 

𝐾 is a mineral compaction coefficient 

𝐾𝑘 
is a kerogen compaction coefficient  

𝜑𝑖𝑟 is the irreducible porosity 

P is the pore pressure 

PL is the lithostatic pressure 

PH is the normal hydrostatic pressure From Braun and Burnham (1992) 
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Summary and Conclusions 

Ductility of kerogen causes greater compaction for richer source rocks 
Similar to observations by others for clay in quartz matrices 

CMR and other logging tools can be used to gather much more data than laboratory 

measurements to better discern trends and calibrate appropriate models 

Unambiguous trends were observed for the Green River Formation in the Piceance Basin 

and used to calibrate a simple enhanced-compaction model  

Generation of porosity from kerogen decomposition is well known but 

preservation is not well quantified 
Data in the literature is relatively sparse with large scatter 

Others have suggested that ductility of mineral matrix dominates porosity preservation 

Several empirical functional forms were suggested for modeling preservation and 

compaction but await better data for calibration 

These effects have been incorporated into the in-house single-cell  

compositional kinetics-fluid flow-geomechanics computer code 

TRESORS currently under development through TOTAL E&P R&D 
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