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Abstract 

 

For almost 70 years, the U.S. Gulf of Mexico (GOM) has been an incubator of new depositional system models, and more 

recently, the focus for complex and dynamic subsalt-sediment trapping styles.   

 

Early passive margin models applied to the GOM suggested short slopes between delta fronts and basin floors and concluded 

that most slopes were sand “bypass” areas. However, subsequent study of the GOM’s present-day salt-supported slope, which 

extends nearly 125 miles from its present-day shelf edge to the basin floor, suggested possible new sand depositional models 

applicable to the Cenozoic sediments below, if the slope was similarly salt-supported at time of deposition. Today, well control 

has dispelled this sand “bypass” thinking by demonstrating the presence of thick sand sequences and, when combined with 

seismic stratigraphy and depth imaging that shows the ancestral salt sheets, yields a robust potential for both lowstand and 

highstand sands in many subsalt Cenozoic cycles. Most importantly, the Miocene confined mini-basin sand bodies of 

amalgamated fans, amalgamated channels, and amalgamated channel levees of the ancestral mid-lower slopes, have proven 

sandstone reservoirs that have produced significant oil and gas fields.  Undoubtedly, there are more of these to be discovered 

and developed.   

 

http://www.searchanddiscovery.com/documents/2017/42047moore/ndx_moore.pdf


This is not the first time that geologists in the GOM have pioneered new depositional concepts. When the authors started their 

GOM geoscience careers in the 1970s, industry was starting to apply Miocene delta depositional models seaward. In the 1950s 

and 1960s, these models had been pioneered in the nearshore. By 1970, Plio-Pleistocene deltas were hypothesized seaward of 

the Miocene deltaic fields, and billions of dollars of lease bonus monies were invested in the 1970s lease sales. Those massive 

Plio-Pleistocene deltaic sandstone reservoirs deposited in the last million years were discovered to contain billions of boe, all 

generated from oil and gas shale source rocks deposited in the Early Cretaceous Aptian (125-113 mya) and Late Jurassic 

Tithonian (152-145 mya). One of these most notable giants on the present-day outer shelf, Eugene Island (EI) 330 field (the 3
rd

 

largest single field in GOM per BOEM  [EUR 770 mmboe]), was discovered and produced suprasalt, in about 300 ft of water 

just 20 miles north of the edge of the Outer Continental Shelf.  

 

During the first 40 years of offshore GOM industry exploration, all petroleum reservoir objectives were “suprasalt”, that is 

above all sheets or beds of salt, like EI 330. The original bedded deep salt (autochthonous) was first deposited soon after the 

opening of the GOM, during Mid-Jurassic Callovian “Louann” time (165-163 mya), and all horizontal salt sheets 

(allochthonous) originated from that Jurassic salt. The old concepts of vertical-only salt dome structuring have evolved toward 

dual-structuring models of both the traditional vertical doming AND the concept of horizontal translation of salt sheets across 

broad areas of the ancestral shelf and slope, similar to today’s salt-supported slope. 

 

Exploratory drilling, both on the shelf and in deepwater, has demonstrated that most salt bodies in the Gulf of Mexico are part of 

these extensive allochthonous salt sheets that have translated more horizontally than vertically throughout the ancestral shelves 

and slopes. Much of what the mobilized salt has covered are thick untested sedimentary sections containing reservoir quality 

sand bodies and effective sealing shales. Preservation of petroleum liquids is also greatly assisted by the heat transfer properties 

of these extensive, subsurface lateral salt sheets. Economically significant fields of oil, condensate, and natural gas have been 

discovered and produced from these high porosity-permeability sandstone reservoirs, despite 15,000-20,000 feet of 

“overburden,” which contained these thick salt sheets.   

 

Today, the present-day outermost shelf and uppermost slope of the Louisiana GOM is well understood as a renewed exploration 

area of high potential, building on the fields discovered (1993-2003) in the early days of poor seismically-imaged GOM subsalt 

traps. Over 300 mmboe has been produced to date (400+ mmboe EUR) from Conger, Hickory, Mahogany, Tanzanite, and 

Tarantula fields, all in 300-1500-ft water depth, near the present-day shelf-slope break.  

 



Explorers have always known the Gulf of Mexico to be a world class exploration basin with tremendous potential. The 

thousands of explorers that have worked its complex geology over the last 70 years know that it has always been a great 

incubator for all forms of innovation that have then been adapted worldwide. The Gulf of Mexico has never been a “dead sea.” 

In its latest report on future GOM petroleum potential, BOEM reported that the GOM has tremendous recoverable petroleum 

resources, with over 50 billion boe yet to be discovered.  Much of it will be subsalt and found in slope-basin floor sand 

reservoirs.  

 

The Offshore U.S. Gulf of Mexico is still a “Mother Lode” of petroleum, where new giant fields like these will continue to be 

discovered and produced. 
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Objectives 

 Highlight depositional systems of reservoir sands in the 
ancestral middle and lower Miocene slope section of the 
Central LA GOM 
 

 Describe these Conger-Mahogany-Hickory Miocene slope 
sands as proven highly productive reservoirs, with further 
potential in surrounding mini-basins 
 

 Demonstrate that the Miocene ancestral middle and lower 
slope is NOT a “bypass” zone,  but is a broad, widespread 
area of sand-filled confined mini-basins with amalgamated 
fans and channels as reservoir sands 
 

 
 



Subsalt Miocene Slope Sand Production  
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      Middle & Lower Slope Miocene Sand Area 
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Miocene Subsalt Pay Sands – Slope 
Fans + Basin Floor Fans 
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  Highly Productive Slope and Basin Floor Sands  
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 Dynamic Salt & Sediment Model 

Heaney 2014 
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        Bathymetry of Modern Sea Floor *  
      An Analog for sediment fed Intraslope Basins 

*Modified from Diegel et al., 1995, Prather et al., 1998 



Delta, Slope, & Basin Floor Prograde Seaward 

Moore 2014 
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15+ Sequences - Lowstand Sand Potential 
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15+ Successive Lowstand Cycles in Miocene  
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      Lowstand Deltas Fed the Salt-Supported 
Extended Slope, Creating Confined Mini-Basins 
       with Amalgamated Fans & Channels 

Moore 2014 



15+ Sequences - Lowstand Sand Potential 
Sequences Primary Zones 

mya 
Sub Epoch 

The 6+ LSTs of the 
Tortonian Stage 
   7.0 – 11.6 MYA 
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      Bathymetry of Upper Miocene “Tortonian” 
 
    Showing Lower Slope Mini-Basins as “Primary Basins”* 
       

*Interpretation based upon 3D Seismic Isopach mapping 

ABYSSAL PLAIN 

LOWER BATHYAL   

FILL AND SPILL 
LOWER SLOPE  
MINI-BASINS 

SALT-SUPPORTED 
RIDGES/SHEETS 

AREA OF DETAIL 

 GREEN CANYON 

           AREA    
 GARDEN BANKS 

           AREA    Primary Basin 

Lefler 2015 



PLIOCENE 

OLIG 

EOCENE 

MESSINIAN 

PLIOCENE TORTONIAN 

SALT 

A A’ 
    TOE 

OF SLOPE LOWER BATHYAL ABYSSAL PLAIN MIDDLE BATHYAL 

      NORTH-SOUTH STRUCTURAL SECTION        

Lefler 2015 
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 Dynamic Salt & Sediment Model 

Heaney 2014 

Salt ModeL - Upper Miocene Tjme ............. ~ Si3lt Model - Thick Si3lt Ci35E' ................ ~ 

, , 
, 

, , , 

=, =, , 
, 

, 
, 

, , 

~ul FE~~;:F-~ UUIF"e:~~~r-e 

Salt ModEL - Late Pliocene to Early Pleistocene Time .... ~ Salt Model. - Pleistocene T ime ............... 1IIj 



  
Trap Styles result from Salt & Sand Dynamics 
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Conclusions 

 Lower slope sands are extensively deposited across the 
Miocene ancestral slope and are most commonly found as 
amalgamated fans and channels in confined mini-basins. 
 

 Lower Slope Miocene sands have produced well in Conger-
Mahogany-Tanzanite-Hickory reservoirs to date  

     (350+ MMBOE produced – 400+ MMBOE EUR). 
 

 GOM Miocene ancestral lower slope is NOT a “bypass” zone,  
but consists of widespread sand-filled confined mini-basins 
with sizeable untested field potential. 
 

 
 
 



Geological & Geophysical Advantages  
  
• Confined Mini-basin Fan Sands – Continuous Reservoirs 
  
• Excellent Porosities – 25% to 30+% 
 
• Key Fields – Conger, Mahogany Deep, Hickory, Tarantula, Aspen 

 
• Proven Petroleum System – Reservoirs, Traps, Seals, Sources 

 
• Advanced Seismic Processing (RTM+) Clarifes Sub-Salt Images 

 
 

 
 

•  Water Depths: 300-600’   
 

• Modern Drilling Technology below Salt 
 
• Mostly Jack-up Rig Access - $70K/day - $20-40MM per Wildcat 

 
• Mostly Conventional Platforms - $40-50 MM per Platform 

 
• Extensive Existing Platform-Pipeline Infrastructure across Area 
 

 

Economic Advantages  
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