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Abstract 

The objective of this research is to determine the physicochemical processes underlying water and solute transport in organic-rich source rocks. 

Experiments were performed on Eagle Ford shale samples composed of organic-rich, low-clay carbonates using a high-pressure triaxial 

assembly with novel design. Experimental results were successfully matched with a numerical chemical transport model. The mathematical 

formulation of this model relies on the chemical osmosis principles driving low-salinity brine into high salinity core samples. The results of this 

research should be beneficial for design of EOR processes in organic-rich shale.   

A custom-designed experimental apparatus was constructed to conduct flow tests. The apparatus is capable of maintaining core samples at 

reservoir pressure, temperature, and confining stress. In addition, a new mathematical model was formulated to simulate flow into the core as a 

porous medium rather than as a molecule-selective membrane. This new model is based on the following principles: (1) the solvent (low-

salinity water) selectively enters the pores by diffusion mass transport and (2) the dissolved salt molecules (which are ionized) are restrained by 

internal electrostatic forces from diffusing in the opposite direction of the low-salinity brine molecules entering the pore network.   

The mathematical model closely matches the experimental results and, more importantly, only very few assumptions were made in matching 

experiments. For instance, the critical model input data, such as permeability, porosity, and rock compressibility, were obtained from flow 

experiments on twin cores, and the diffusion coefficient was chosen by history matching. The strengths of the numerical simulation include the 

following: (1) the mathematical model is based on the mass transport fundamental principles, (2) the model does not require the use of the 

ambiguously defined membrane efficiency term, and (3) the chemical potential gradient is the reason for the low-salinity brine entering the 

high-salinity brine cores to generate osmotic pressure within the cores. The latter implies that osmotic pressure is the consequence of water 

entering the cores, not the cause. 
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 Determine the physicochemical processes underlying water and solute transport in 

organic-rich Eagle Ford and Vaca Muerta source rock samples 

 Conduct coupled flow/geomechanical experiments on preserved Eagle Ford shale 

samples using a novel high pressure triaxial assembly 

 Include reservoir conditions: pressure, temperature and effective stress 

 Conduct transport modeling to match experiments  

Objective 

 Use research findings in design of hydraulic fracturing & EOR 

Impact 



Water-Solute Transport in Mudrocks• Anton Padin 

 Improved production rates after long periods of shut-in 

 Variable flowback-water recovery 

 Time-dependent, gradual increase in flowback water salinity                                  
(Na+, Ca2+, K+, Fe, Sr2+ or Ba2+)  

 

Observations from Surveillance of Flowback Water after HF  

 Improved oil recovery by: Pressure/temperature increase and salinity decrease 

 Attributed to wettability changes: 

 Similar to alkaline flooding – interfacial tension reduced 

 Increased repulsion forces, towards more water-wet 

Observations from EOR Field Studies 
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 Upper Cretaceous  

 Isolated carbonate platform 
surrounded by siliciclastics 

 Deposited during a sea level 
transgression.  
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 Marine, black to dark brown 
organic-rich mudstone 

 High contents of TOC, hydrogen 
index and anomalous 
concentrations of molybdenum, 
vanadium, nickel and chromium 

 Core from the lower Vaca Muerta, 
well LJE-1010 

GOR 

LEF Thickness 

Source Rock II:  
Vaca Muerta Marl 



Sample Core: Texture Interface and Microfractures 
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Organic Pore Types 
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Experiments on Solute/Water 
Transport in Mudrocks 
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 Eop depends on the ion type: 

 

 Eop  = 0 if k > 0.2 nD 

KCl < NaCl < CaCl2 < MgCl2 
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 Most research focused on: clay-rich, non-organic, seal shales 

 In seal shales – interactions clay surface-water-solute are dominant 

 No reservoir conditions (P,T) in experiments 

 Conducted at reservoir conditions (6,000 psi conf., 4,000 psi Pp) 

 Studied impact of solute type (monovalent, Na+ and K+, and divalent, Ca2+) on 
surface-fluid interaction 

 Impact of initial saturation, effective stress and solute concentration 

Our set of tests 

Gaps from prior research in surface-fluid interaction   
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Permeability-Osmosis Apparatus – Reservoir Conditions 
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Permeability-Osmosis Apparatus – Reservoir Conditions 
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 Pore Pressure (10,000 psi max.) 

 Temperature (40ºC ±0.3ºC) 

 P and S wave velocities (1 MHz) 

 Displacement, Stress and Resistivity 
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Impact of Solute Type – Replacing low salinity NaCl by CaCl2 
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Novel Conceptual Approach to Transport Mechanisms 
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 Rock assumed a semi-permeable membrane, but thickness much larger than a membrane 

 Osmotic pressure considered the imbibing force 

Existing Mathematical Model has Critical Limitations 

 Osmotic pressure is the consequence of the selective 
molecular transport by the solvent, not the imbibing 
force 

 Only H2O allowed to enter the pore space 

 Salt molecules are restrained by internal forces to move 
against water molecule flow 

 Water and solvent flow inside core both by  advective 
flow and molecular diffusion 

We treat porous media as nano-tubes rather than a membrane 
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Fundamental equations: 

 Component 1 (solute) 

 

 

 

 

 

 Component 2 (water) 
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1 2 1C C Water diffusion due to  
chemical osmosis 

Water advection 

 System of three equations with 
three primary variables 

 Solved for pore pressure p, water 
and solute concentrations (C2 and 
C1) 

Boundary conditions 
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 Simpler formulation based on transport phenomena 

 No empirical scaling factor  

 Water imbibes because of selective molecular transport by the solvent 

 No thermodynamic activity is needed for transport equations 

 Diffusion coefficient is a more fundamental parameter than membrane efficiency 

 Impact of ions other than Na+ and Cl- can be modeled using additional components 

Advantages over Prior Models 

 Not capturing electro-osmosis (important for high (>50%)-clay content shales) 

 Not capturing impact of organic-matter surface forces  

 

 

Limitations 
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