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Abstract

The objective of this research is to determine the physicochemical processes underlying water and solute transport in organic-rich source rocks.
Experiments were performed on Eagle Ford shale samples composed of organic-rich, low-clay carbonates using a high-pressure triaxial
assembly with novel design. Experimental results were successfully matched with a numerical chemical transport model. The mathematical
formulation of this model relies on the chemical osmosis principles driving low-salinity brine into high salinity core samples. The results of this
research should be beneficial for design of EOR processes in organic-rich shale.

A custom-designed experimental apparatus was constructed to conduct flow tests. The apparatus is capable of maintaining core samples at
reservoir pressure, temperature, and confining stress. In addition, a new mathematical model was formulated to simulate flow into the core as a
porous medium rather than as a molecule-selective membrane. This new model is based on the following principles: (1) the solvent (low-
salinity water) selectively enters the pores by diffusion mass transport and (2) the dissolved salt molecules (which are ionized) are restrained by
internal electrostatic forces from diffusing in the opposite direction of the low-salinity brine molecules entering the pore network.

The mathematical model closely matches the experimental results and, more importantly, only very few assumptions were made in matching
experiments. For instance, the critical model input data, such as permeability, porosity, and rock compressibility, were obtained from flow
experiments on twin cores, and the diffusion coefficient was chosen by history matching. The strengths of the numerical simulation include the
following: (1) the mathematical model is based on the mass transport fundamental principles, (2) the model does not require the use of the
ambiguously defined membrane efficiency term, and (3) the chemical potential gradient is the reason for the low-salinity brine entering the
high-salinity brine cores to generate osmotic pressure within the cores. The latter implies that osmotic pressure is the consequence of water
entering the cores, not the cause.
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Objective

Determine the physicochemical processes underlying water and solute transport in

organic-rich Eagle Ford and Vaca Muerta source rock samples

Conduct coupled flow/geomechanical experiments on preserved Eagle Ford shale

samples using a novel high pressure triaxial assembly
Include reservoir conditions: pressure, temperature and effective stress

Conduct transport modeling to match experiments

Impact

Use research findings in design of hydraulic fracturing & EOR
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Observations from Surveillance of Flowback Water after HF

O Improved production rates after long periods of shut-in

Q Variable flowback-water recovery
O Time-dependent, gradual increase in flowback water salinity
(Na*, Ca%*, K*, Fe, Sr?* or Ba?*)

Observations from EOR Field Studies

O Improved oil recovery by: Pressure/temperature increase and salinity decrease

O Attributed to wettability changes:
O Similar to alkaline flooding — interfacial tension reduced

O Increased repulsion forces, towards more water-wet
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Source Rock Il:
Vaca Muerta Marl

O Marine, black to dark brown

organic-rich mudstone

Q High contents of TOC, hydrogen
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index and anomalous
concentrations of molybdenum,
vanadium, nickel and chromium

O Core from the lower Vaca Muerta,

well LJE-1010
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Physico-Chemical
Processes of

Transport
. Prior
Experlfner:ntal Theoretical
Investigation Model
under Reservoir
Conditions
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Hydraulic Chemical . .

v . ElectricPotential Temperature
Pressure Potential Gradient Gradient
Gradient Gradient

Convzlectlon Chemlc?I Electro-Osmosis Thermo-osmosis

(Darcy's Law) Osmosis

T . Thermal
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Streaming
Current
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Transfer

Diffusion Current

Dufour Effect

Effect)

Electric Thermoe-
Conduction electricity
(Ohm's Law) (Seebeck Effect)

Thermal
Peltier Effect Conduction
(Fourier's Law)

0 E,, empirical scaling factor

termed membrane efficiency

O Defines the selectivity of
membrane to specific ions

O Not-well-defined physical
entity

Q E,,depends on the ion type:

KCI < NaCl < CaCl, < MgCl,
Q E,, =0ifk>0.2nD
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Gaps from prior research in surface-fluid interaction

O Most research focused on: clay-rich, non-organic, seal shales
O In seal shales — interactions clay surface-water-solute are dominant
O No reservoir conditions (PT) in experiments

Our set of tests

O Conducted at reservoir conditions (6,000 psi conf., 4,000 psi Pp)

O Studied impact of solute type (monovalent, Na+ and K+, and divalent, Ca2+) on
surface-fluid interaction

O Impact of initial saturation, effective stress and solute concentration
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Existing Mathematical Model has Critical Limitations

O Rock assumed a semi-permeable membrane, but thickness much larger than a membrane
O Osmotic pressure considered the imbibing force

We treat porous media as nano-tubes rather than a membrane

O Osmotic pressure is the consequence of the selective
molecular transport by the solvent, not the imbibing
force

Porous

Disk *

O Only H,0 allowed to enter the pore space

O Salt molecules are restrained by internal forces to move ’Z’[’,"Z""
OCKS
against water molecule flow

O Water and solvent flow inside core both by advective
flow and molecular diffusion e
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O Component 1 (solute)

O System of three equations with
three primary variables

O Solved for pore pressure p, water
Solute diffusion  Bulk solute advection and solute concentrations (C, and

O Component 2 (water) C,)

Water diffusion due to
chemical osmosis

Water advection Boundary conditions
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Osmotic Pressure

Input data obtained from experiments
(k, compressibility, porosity, etc.)
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Advantages over Prior Models
0
0
0
0
0
0

Limitations

Simpler formulation based on transport phenomena

No empirical scaling factor

Water imbibes because of selective molecular transport by the solvent

No thermodynamic activity is needed for transport equations

Diffusion coefficient is a more fundamental parameter than membrane efficiency
Impact of ions other than Na+ and Cl- can be modeled using additional components

O Not capturing electro-osmosis (important for high (>50%)-clay content shales)
O Not capturing impact of organic-matter surface forces
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