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Abstract

Mudrocks are notoriously difficult to describe. XRF analysis with calibrated hand-held instruments gives quantitative elemental results that provide
insight into mineralogical composition of these fine-grained, dark rocks, if XRF results are supplemented by mineralogical analysis (XRD). When
properly interpreted, XRF data can improve facies definitions, but understanding the abundance of elemental data (20+ major and trace elements for every
data point) is problematic. The object of this study was an 852-ft continuous core through a sequence of interbedded basinal hemipelagic and sediment
gravity flow deposits. Facies delineation based on core description was refined using iterative hierarchical cluster analysis, a technique that treats the rock
as a whole, rather than analyzing individual elements or element ratios (e.g. Ca, Al, Si/Al, Si/Ti). Elements were interpreted as proxies for productivity
(Ni, Zn, V), reducing conditions (Mo, U), detrital deposition (Si, Al, Ti, Zr, Rb), carbonate deposition (Ca, Mg, Sr), phosphate enrichment (P, Y), and
sulfur enrichment (S). The most significant cluster-defining elements were determined by applying analysis of variance and a partitioning index to
elements in each cluster. This approach produced chemofacies (e.g. high-detrital siliceous mudrock) that cannot be ascertained as rapidly or as
quantitatively by other methods, delineated a previously-unrecognized geochemical boundary between the Wolfcamp and lower Leonard (sulfur-enriched
mudrocks below vs. high-redox/high productivity mudrocks above), and revealed sub-meter-scale cyclicity of chemofacies that is not otherwise apparent.
Calibrated XRF data subjected to cluster analysis provide finely detailed, core-based, geochemical ‘ground truth’ that is not available by any other means.
This technique is a valuable supplement to traditional description of lithofacies based on depositional features seen in core.
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Problem statement and objectives Robert W. Baumgardner, Jr., and Harry D. Rowe HIERARCHICAL CLUSTER ANALYSIS
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Problem statement and objectives Robert W. Baumgardner, Jr., and Harry D. Rowe Categorized HCA delineating large-scale geochemical, stratigraphic changes
Calibrated X-ray fluorescence (XRF) scanning of core generates large Bureau of Economic GeO|Ogy in some lithofacies and clusters
amounts of elemental data. Determining which elements are most The Universitv of Texas at Austin _ _ _
important for characterizing rocks can be daunting. One method in y Major-element lithofacies Trace-element clusters
use is hierarchical clustering analysis (HCA), which clusters geologic §30 GR_140[10 Res 1000[30 _GR 140[10 Res 1000[30 GR 140[10 Res 1000| Figure 7. Some lithofacies and clusters
data without regard to lithofacies. In contrast, using “categorized” HCA, _ _ _ _ _ ] _ R a—— = E—— are more common in the Wolfcamp than
the analyst subdivides the data into categories--major rock types (such Clusters defined I(l)“tfoo Categorlzed HCA defined lithofacies based on Trace elements I(l)“tfoo ] g gg —= g in the lower Leonard and vice versa.
as limestone, and siliceous and mixed mudrocks)--beforehand. With : . . . . . F— —— i Lithofacies and clusters more common
presorted data, categorized HCA avoids grouping disparate rock types by qn‘ferences In geochemlcal differences not seen in core mterpreted as = ¢<;: = i —— in the Wolfcamp tend to be more
into clusters based on similar amounts o_f minor rock constituents, which major elements 3 130 GR 1400 Res  300(30 GR  140]0 Res 300 indicators of 2] =] = g dolomitic, with more biogenic silica—
“smears” the distinction between recognized rock types. The goal of this = i % % enriched in detrital proxies but depleted
work is to develop a systematic approach to analysis of XRF data that ] depOSItI0n8| ] ——] —| in proxies for anoxia. Clusters more
efficiently incorporates geochemical data into standard core description Mixed mudrocks =5 environment o common in the lower Leonard are
and lithofacies delineation. < ] & enriched in proxies for paleoproductivity
o] ~ and anoxia
Q ] é '
Pros and cons of HCA Siliceous 4 i Esianes E ] ——_| However, other indicators of anoxia
Advantages of cluster analysis: mudrocks &* n=242 R o g (pyrite framboids, phosphate nodules,
1)U titative (el tal XRF) dat =414 s o 8| — = indi i i
) Uses quantitative (elementa ) data _ . ® | tcies based on core description | Lithofacies based on cluster analysis. \ = TOC) indicate that anoxia prevailed
2) Treats elemental data as an assemblage., i.e., Ilkg a rock and XRF data of XRF data E throughout Wolfcampian/early
3) With use of partitioning index and analysis of variance, can a rt1 00 0 Sl el SN SR Quartgoc’)éo ) 53 ;"‘*OCaIcite ] e Leonardian time. Rising sea level during
determine which elements are most important for defining clusters uartz g . . 100 “alcite N CEIREITERIS [ILEITRE 3 imestone . _ _ 100 = — ] that epoch (Wahlman and Tasker, 2013)
Siliceous clusters | Mixed clusters | |Limestone clusters B Muddy bioclast/lithoclast floatstone | © | B Argillaceous limestone Siliceous clusters | Mixed clusters Limestone clusters = ] appears to have replenished seawater
. oo e Calcareous oCalcareous eLimestone = Ske'eta' Wackestone/ ackstone @ B Calcareous mixed mudrock o Anoxic e Anoxic, most traces enriched | o Anoxic, all traces enriched 2] Q L. B
Disadvantages of cluster analysis: _ o Dolomitic e Dolomitic e Dolomitic OJ Siliceous facies and cFI)usters = B Mixed mudrock o Anoxic, most  |e Anoxic, most traces depleted | e Anoxic, paleoproductive ] £ borne Mo and favored paleoproductivity
1) Results are dependent on the current data set, are not directly o Argillaceous oArgillaceous | | eArgillaceous mitted to simolify figure o B Calcareous siliceous mudrock traces enriched |e Dysoxic, detrital e Detrital ] S and development of anoxia.
transferable to other data sets (other cores or basins) o Biogenic oMixed omi piy figu 8 3 Argillaceous mixed mudrock e Dysoxic, detrital |e Dysoxic, detrital, o Dysoxic, most traces depleted = S heree. ceedevel [fee el
2) A few anomalously high ve}Iues for a single element can give Figure 2. Ternary diagram of calibrated XRF data. Quartz, illite, and _ o . . — g - paleoproductive 3] i account for t,he decrease in number
appearance of a cluster dominated by that element calcite based on Si, Al, and Ca from XRF data (see background Figure 4. (A) Carbonate-rich lithofacies defined by core description supplemented Figure 5. Ternary diagram of calibrated XRF data. Quartz, illite, and calcite & % of detrital-dominated clusters from
3) Requires repetition to achieve best results poster for details). Categorized HCA was applied to data already by XRF data. (B) Lithofacies based on cluster analysis of XRF data. Cluster-based are based on Si, Al, and Ca data from XRF data (see background poster Wolfcamp to lower Leonard as sources
classified into major rock types (limestone, mixed and siliceous lithofacies reflect cyclic changes in geochemistry, which are not visible in core. for details). Clusters are defined by abundance of trace elements. Most 1 === of terrigenous sediment retreated farther
sl el laers firl ted f ST - Muddy bioclast/lithoclast floatstones (A) are commonly composed of layers of lust T arfehed ili Most clust (P P _
mudrocks), yielding clusters interpreted from abundance of major limestone (B) sandwiched between layers of less calcareous, more argillaceous clusters with enriched traces are siliceous. Most clusters with deplete S from the basin center and carbonate
elements. Presence of dolomite and biogenic silica requires and siliceous mudrock y ’ g traces are limestones, indicating that carbonate deposition interrupts oy producers proliferated as shelves
. . . . confirmation with XRD and/or thin-section study. | : anoxia, detrital input, and accumulation of organic matter. Stratigraphic flooded.
thhofaC|e§ based on core interpretation - ——F— — — e T L
and Ca, Si from XRF elemental data + 3{(c) D) ——— - s é
] ﬁ S
1 —| (&)
2130 GR 140010 Res 1000| ©O-L. Greer 1 . . ] H
= - API 42-383-10189 s[40_GR 17010 Res 1000 | jthofacies based on =% - g [40_GR 170110 Res 1000 Trace element abundance |
& N o . ] Ny . . . .
g — : clusters defined by % { ‘ § delineating shifts in ocean S —— e
4 = 1o . i 1@ i 2 S B —— e
}I, = = XRF major element data, ?; 5 Wat_er ChemIStry and * T Dolomitic limestone | = Detrital = Anoxic, all traces
5 —== o |8 showing small- and large- =z — | 3 —_— il s |2 sediment supply = DoIomith mixed ® Dysoxic, detrital, -:r:]g((:izegaleo
=3 = | — . , -
¢ — N \ scale stratigraphic Lithofacies based on core description | Lithofacies based on cluster analysis R l — - ggggﬁc siliceous Baleoprozui:t'ltv el productive
= h and XRF data of XRF data ' % mudrock m Dysoxic, detrita ® Anoxic
changes ISiilfEzele mudr(_)ck 3|5 Calcargpus .mlxed Ll | o Lithofacies and clusters that do not demonstrate stratigraphic changes
O Calcareous facies and clusters 8 | ™ Dolomitic mixed mudrock
S S omitted to simplify figure 2 | B Calcareous siliceous mudrock =3 Next steps
™ R g O Dolomitic siliceous mudrock R ® Confirm interpretations of lithofacies and clusters with analysis of thin sections and XRD mineralogical data.
(C) Siliceous facies defined by core o v B Argillaceous siliceous mudrock ® Incorporate confirmed lithofacies and trace-element clusters into revised lithofacies names/descriptions.
Lithofacies 2 T description supplemented by XRF data. = [ Biogenic siliceous mudrock 1= Conclusions
3 Bl Siliccous mudrock 5 " Limestone (D) Lithofacies based on cluster analysis of XRF data. Siliceous mudrocks (C) are 5 czi ® Categorized HCA should be done before core description, in order to incorporate geochemical data into lithofacies
8 [ Calcareous mudrock S commonly composed of layers of biogenic siliceous mudrock (D) alternating with = descriptions and to guide collection of more expensive data, such as XRD, TOC, Rock-Eval, and thin sections.

Clusters

I Muddy bioclast/lithoclast I Dolomitic limestone* argillaceous siliceous mudrock, interrupted locally by less-siliceous mudrock.

(&)
—— S N =
]
n
Q ; : . - : ® Categorized HCA is best used as an initial survey tool to find large-scale geochemical changes and, if desired, select
floatstone § £ .-- Argillaceous limestone Scale of GR and Res logs changes from (A) and (B) to (C) and (D) to improve the % [ I Anoxic, all traces enriched* smalﬁscale SRS (e Sl ! d g d
— [ Skeletal wackestone/packstone — - | CElEERs Mt mudroi:k visibility of siliceous facies with high GR and low Res. | = e AU, PR VE e Categorized HCA revealed sub-meter-scale geochemical changes, e.g., argillaceous and biogenic siliceous mudrock
E . £ ) F D<_)Iom|t|c IS e e 0 TOC (est) 6/20 UCS (est) TOC (est) 6|20 UCS (est) 90 = % - Detrlta_l lithofacies correlated with changes in estimated rock strength and TOC.
= | Figure 1. O. L. Greer 1 core log < | S [ 1 Mixed mudrock 3 S 90(0 6 = — Sk ] Dysoxic, most traces depleted Cat - od HCA detected | I hemical ch ‘ late Wolf ian t v L dian ti
8 £l interpreted at 1-ft spacing, equal ) el k[ Argillaceous mixed mudrock 8}'{'5% é: 2 E = [ B Anoxic, most traces enriched ¢ L.ategorized etecte hg:rge-scg efqeoc emica g arlwges—c;a.g.: rom fate o cslr?plqn %earlyt/h ec|>nt§r an time
% to XRF data collection. Lithofacies a % g'- Calcareous siliceous mudrock g Ll = % o == Anoxic, most traces depleted Fietrltal proxies decre:ase W |elpr.o;iles oranoxia gn pa; eoprod UC’.“Y'ty mc(;e:se_— It .a cto .m?h e dWI rlc)a ailve fIse
=| are based on features seen in core % o| I Dolomitic siliceous mudrock & *! =| ‘2| I Dysoxic, detrital in sea level, suggesting eustatic influence on anoxia, paleoproductivity, and detrital input in the deep basin.
5 ¢ supplemented by XRF data used ] 2 [ Argillaceous siliceous mudrock .%: l 0" B Dysoxic, detrital, paleoproductive* References
S to differentiate between calcareous ?L[_1 Biogenic siliceous mudrock* D 1 S 3 ' [ Anoxict Algeo, T. J., Hannigan, R., Rowe, H., Brookfield, M., Baud, A., Krystyn, L., and Ellwood, B. B., 2007, Sequencing events across the
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