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Abstract 

Mudrocks are notoriously difficult to describe. XRF analysis with calibrated hand-held instruments gives quantitative elemental results that provide 

insight into mineralogical composition of these fine-grained, dark rocks, if XRF results are supplemented by mineralogical analysis (XRD). When 

properly interpreted, XRF data can improve facies definitions, but understanding the abundance of elemental data (20+ major and trace elements for every 

data point) is problematic. The object of this study was an 852-ft continuous core through a sequence of interbedded basinal hemipelagic and sediment 

gravity flow deposits. Facies delineation based on core description was refined using iterative hierarchical cluster analysis, a technique that treats the rock 

as a whole, rather than analyzing individual elements or element ratios (e.g. Ca, Al, Si/Al, Si/Ti). Elements were interpreted as proxies for productivity 

(Ni, Zn, V), reducing conditions (Mo, U), detrital deposition (Si, Al, Ti, Zr, Rb), carbonate deposition (Ca, Mg, Sr), phosphate enrichment (P, Y), and 

sulfur enrichment (S). The most significant cluster-defining elements were determined by applying analysis of variance and a partitioning index to 

elements in each cluster. This approach produced chemofacies (e.g. high-detrital siliceous mudrock) that cannot be ascertained as rapidly or as 

quantitatively by other methods, delineated a previously-unrecognized geochemical boundary between the Wolfcamp and lower Leonard (sulfur-enriched 

mudrocks below vs. high-redox/high productivity mudrocks above), and revealed sub-meter-scale cyclicity of chemofacies that is not otherwise apparent. 

Calibrated XRF data subjected to cluster analysis provide finely detailed, core-based, geochemical ‘ground truth’ that is not available by any other means. 

This technique is a valuable supplement to traditional description of lithofacies based on depositional features seen in core. 
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Part I: Background 
Robert W. Baumgardner, Jr., and Harry D. Rowe
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Figure 6. Plot of preliminary clusters shows that clustering provides basis for identifying 
facies that are not visible in core (e.g., clusters 13, 14, 19, 25, compared to Fig. 2). 
However, clustering “smears” data between recognized rock types (limestones, mixed 
mudrocks, and siliceous mudrocks), if cluster is based on elements not represented by 
apices of ternary diagram (e.g., P in cluster 11). One solution is to separate data into
major rock types before clustering, herein referred to as “categorized hierarchical 
clustering analysis”.                                  See main poster for explanation.
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“The principal aim of cluster analysis is to partition multivariate observations into a
number of meaningful multivariate homogeneous groups...A good outcome of cluster
analysis will result in a number of clusters where the observations within a cluster
are as similar as possible while the differences between the clusters are as large
as possible.” Templ et al., 2008

Table 2. F statistic is a measure
of the significance of an element
in the definition of all clusters.

Ca is the most significant 
element, either by its presence
or absence, because it is highly 
variable between clusters but is
consistently high or low within 
any given cluster.

The next-most important 
elements are detrital input 
proxies, which, together with
Ca, indicate that clusters are 
defined primarily by presence
or absence of carbonate or 
detrital sediment.

Mn and P are the least 
significant elements, but for 
different reasons. P is highly 
variable both within and
between clusters. Mn has 
almost no variability (hence, it 
has a PI of 1.00).

Element F
%Ca 1547.0
%Ti 945.5
%K 940.2
%Si 835.9
Rb 532.0
Zr 431.0
Cr 244.8
U 216.0
Nb 190.7
Co 153.0
V 114.4
%Fe 110.3
Pb 103.6
Ni 102.3
Mo 89.3
As 70.8
%S 31.1
Zn 19.9
%Mg 14.1
Y 13.0
%Mn 9.4
%P 1.8

Table 1. Partition Index (PI) values (Phillips, 1991) for clusters defined by iterative hierarchical cluster analysis (HCA). 
Elements are ranked from highest (most-enriched) to lowest (most-depleted) relative to their average value. Colors indicate
elements that are interpreted as indicators of the same geochemical or depositional factor (e.g., blue = presence of 
carbonate).

element PI element PI element PI element PI element PI element PI element PI element PI element PI element PI
Mo 3.18

Mo 6.59 Zr 2.24
Zn 3.08 V 1.69 Zr 1.44
V 2.31 Zn 1.67 Cr 1.43 %P 1.66

U 26.88 As 2.24 As 1.63 %Si 1.42 %Mg 1.26
Nb 10.49 Co 2.17 %Ti 1.62 %K 1.39 %S 1.16
Pb 5.74 Ni 1.79 %K 1.59 %Ti 1.35 Rb 1.80 %Ti 1.14
Co 4.09 Zr 1.77 %S 1.38 Rb 1.33 %K 1.53 U 1.12
Ni 3.52 %S 1.63 %Si 1.28 V 1.29 Zr 1.49 Cr 1.12
Zn 3.11 Pb 1.52 Rb 1.28 Co 1.29 Co 1.42 Zr 1.10
Y 2.50 Rb 1.52 Nb 1.25 Ni 1.25 %Ti 1.35 Y 1.09
As 1.94 %K 1.49 Y 1.23 Y 1.22 %Si 1.33 %Fe 1.09
%S 1.64 %Ti 1.44 Co 1.21 Zn 1.22 Ni 1.18 %K 1.05
Cr 1.51 %Fe 1.35 Pb 1.18 Nb 1.20 Nb 1.18 As 1.05 %P 4.19
%Si 1.41 %Si 1.34 Ni 1.15 Mo 1.14 Cr 1.18 Co 2.27 %Si 1.04 %Ca 1.63
%K 1.35 Cr 1.32 Cr 1.14 %S 1.07 %Fe 1.13 %Mg 2.12 Pb 1.04 U 1.34 %Ca 2.79
V 1.33 Nb 1.14 %Fe 1.12 %Fe 1.03 Y 1.09 %Fe 1.83 Ni 1.04 Y 1.23 %Ca 2.27 %Mg 1.27
%Ti 1.27 Y 1.00 %Mg 1.05 Pb 1.00 Zn 1.02 %Ca 1.00 Nb 1.04 %Mg 1.11 U 1.33 U 1.15
%Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00 %Mn 1.00
%Fe 0.96 %Mg 0.82 U 0.98 As 0.99 %S 0.98 Y 0.99 Rb 0.94 Nb 0.99 %Mg 0.94 Pb 0.86
%Mg 0.73 U 0.69 %P 0.24 U 0.75 Pb 0.95 Ni 0.99 Zn 0.88 %S 0.98 Pb 0.90 V 0.82
%P 0.29 %P 0.34 %Ca 0.19 %Mg 0.69 V 0.80 %Ti 0.96 %Ca 0.80 Pb 0.95 As 0.89 As 0.79
%Ca 0.05 %Ca 0.05 %P 0.24 As 0.77 %K 0.94 Mo 0.80 Cr 0.93 %S 0.80 %Fe 0.65
Mo 0.00 %Ca 0.09 Mo 0.68 Zn 0.94 V 0.80 %Fe 0.92 V 0.74 %S 0.62
Rb 0.00 %Mg 0.66 Pb 0.91 Co 0.75 As 0.92 %Fe 0.71 %P 0.58
Zr 0.00 U 0.44 %Si 0.87 V 0.88 Ni 0.68 Y 0.50

%P 0.39 Rb 0.86 Zn 0.83 Y 0.65 Nb 0.50
%Ca 0.04 Cr 0.86 Ni 0.82 Nb 0.64 Ni 0.49

%S 0.85 %Si 0.73 %P 0.63 Co 0.47
Nb 0.85 %Ti 0.66 Cr 0.62 Zn 0.42
As 0.83 %K 0.56 Zn 0.56 %Si 0.37
Zr 0.78 Rb 0.55 %Si 0.54 Cr 0.36
V 0.73 Mo 0.43 %Ti 0.48 %Ti 0.22
U 0.62 Co 0.42 Co 0.46 Rb 0.18
Mo 0.39 Zr 0.41 %K 0.40 %K 0.15
%P 0.34 Rb 0.37 Mo 0.11

Mo 0.21 Zr 0.06
Zr 0.14
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Figure 5. Cluster analysis is an iterative process. The number of clusters is, in part, a judgment call by the analyst, 
based on knowledge of the rocks and level of detail needed to delineate facies based on the clusters. In this case, 
10 clusters were chosen to differentiate between different levels of detrital enrichment (red area at lower left).
Cluster analysis “distills” elemental data from XRF into a manageable number of clusters, which can then be
analyzed in terms of elemental abundance and association and further interpreted as facies.
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Figure 4. Hierarchical cluster analysis 
gathers elemental data into nearest- 
neighbor groups of elements.

Data measurements are clustered based
on proximity in 2-D Euclidean space,
a.k.a. similarity.

A hierarchy of similarity is built as data
measurements are grouped into clusters.

All uncorrelated elemental data (22 major 
and trace elements) were used to define
clusters.
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Stratigraphic plots of single elements from XRF scans

Figure 3. The sheer abundance of XRF data is a challenge to interpret. More than 20
major and trace elements are measured. At this stage, cluster analysis can be used
in an exploratory approach to the data to sort them into meaningful groups. Cluster
analysis is properly used as a tool of discovery, revealing useful associations and
structures in the data.
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Problem statement and objectives
Mudrocks are notoriously difficult to describe. XRF analysis with
calibrated hand-held instruments gives quantitative elemental results
that provide insight into mineralogical composition of these fine-
grained, dark-colored rocks, when supplemented by mineralogical 
analysis (XRD). XRF analysis generates a wealth of elemental 
information that can form the basis for better facies definitions. But
properly interpreting the abundance of elemental data is problematic.

Application
Core from lower Leonard/upper Wolfcamp in southern Midland Basin
was described and analyzed for mineralogical content (XRD) and 
elemental content (XRF). Initial facies definitions were based on visual
examination supplemented by major element (Ca, Si) percentages.
Then, facies analysis was refined by iterative hierarchical cluster 
analysis (HCA) of XRF data.

Figure 2. Facies interpreted on basis of core description and XRF
data. Quartz, illite, and calcite based on Si, Al, and Ca measured
by XRF (see equations below). But to exploit the full range of 
elemental data provided by XRF scanning, further analysis is required.
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Figure 1. O. L. Greer 1 core log
interpreted at 1-ft spacing, equal
to XRF data collection. Facies
are based on features seen in core
supplemented by XRF data used
to differentiate between calcareous
and siliceous mudrocks.
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1)  Calcite (%) = Cameas x 100/40. [40 = molar wt of Ca. Assumes all Ca
is in calcite. Confirmed by XRD data and TICmeas vs Ca plot (not shown)].

2)  Clay minerals (%) = Almeas x 100/k1. [K/Al ratio indicates most K is in
illite. XRD data show most clay is illite.] (Algeo et al., 2007).

3)  Quartz (%) = SiO2(meas) - (Almeas/27 x k2 x 60.1). [Assumes all Si
not in illite is in quartz.] (Algeo et al., 2007).

where: k1 = average concentration of Al in illite, the dominant clay mineral.
  k2 = 1.26 = Si/Al molar ratio in illite.
  27 = molar wt of aluminum, 60.1 = molar wt SiO2

Equations used to calculate mineralogy
from elemental data

Mudrock Systems
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Variations in estimated total organic
carbon [TOC (est)] and rock strength
[UCS (est)] are more closely aligned with
cluster-based lithofacies (Fig. (F)) than with conventional lithofacies (Fig. (E)), 
suggesting that geochemical differences detected by calibrated XRF scanning may 
be used to understand small-scale vertical changes in mechanical stratigraphy and
organic matter content.
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(D) Lithofacies based on cluster analysis of XRF data. Siliceous mudrocks (C) are 
commonly composed of layers of biogenic siliceous mudrock (D) alternating with 
argillaceous siliceous mudrock, interrupted locally by less-siliceous mudrock. 
Scale of GR and Res logs changes from (A) and (B) to (C) and (D) to improve the 
visibility of siliceous facies with high GR and low Res.
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Figure 4. (A) Carbonate-rich lithofacies defined by core description supplemented
by XRF data. (B) Lithofacies based on cluster analysis of XRF data. Cluster-based
lithofacies reflect cyclic changes in geochemistry, which are not visible in core. 
Muddy bioclast/lithoclast floatstones (A) are commonly composed of layers of
limestone (B) sandwiched between layers of less calcareous, more argillaceous
and siliceous mudrock.
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Figure 7. Some lithofacies and clusters
are more common in the Wolfcamp than
in the lower Leonard and vice versa. 
Lithofacies and clusters more common
in the Wolfcamp tend to be more 
dolomitic, with more biogenic silica–
enriched in detrital proxies but depleted
in proxies for anoxia. Clusters more 
common in the lower Leonard are 
enriched in proxies for paleoproductivity 
and anoxia.

However, other indicators of anoxia
(pyrite framboids, phosphate nodules,
TOC) indicate that anoxia prevailed
throughout Wolfcampian/early 
Leonardian time. Rising sea level during 
that epoch (Wahlman and Tasker, 2013) 
appears to have replenished seawater-
borne Mo and favored paleoproductivity
and development of anoxia.
Furthermore, sea-level rise would
account for the decrease in number
of detrital-dominated clusters from
Wolfcamp to lower Leonard as sources 
of terrigenous sediment retreated farther
from the basin center and carbonate
producers proliferated as shelves 
flooded.

Categorized HCA delineating large-scale geochemical, stratigraphic changes
in some lithofacies and clusters

Major-element lithofacies Trace-element clusters

Lithofacies and clusters that do not demonstrate stratigraphic changes
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Conclusions

  
   Categorized HCA detected large-scale geochemical changes—e.g., from late Wolfcampian to early Leonardian time 
   detrital proxies decrease while proxies for anoxia and paleoproductivity increase—that coincide with relative rise 
   in sea level, suggesting eustatic influence on anoxia, paleoproductivity, and detrital input in the deep basin.

   Categorized HCA revealed sub-meter-scale geochemical changes, e.g., argillaceous and biogenic siliceous mudrock
   lithofacies correlated with changes in estimated rock strength and TOC.

   Categorized HCA should be done before core description, in order to incorporate geochemical data into lithofacies 
descriptions and to guide collection of more expensive data, such as XRD, TOC, Rock-Eval, and thin sections.
Categorized HCA is best used as an initial survey tool to find large-scale geochemical changes and, if desired, select
small-scale changes for further study.
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Figure 5. Ternary diagram of calibrated XRF data. Quartz, illite, and calcite
are based on Si, Al, and Ca data from XRF data (see background poster
for details). Clusters are defined by abundance of trace elements. Most
clusters with enriched traces are siliceous. Most clusters with depleted
traces are limestones, indicating that carbonate deposition interrupts
anoxia, detrital input, and accumulation of organic matter. Stratigraphic
differences shown in Figures 6 and 7. 

Calcite0 50 100

Illite

0

50

100

Quartz

0

50

100

Limestone clusters
   Anoxic, all traces enriched
   Anoxic, paleoproductive
   Detrital
   Dysoxic, most traces depleted

Mixed clusters
   Anoxic, most traces enriched
   Anoxic, most traces depleted
   Dysoxic, detrital
   Dysoxic, detrital, 
     paleoproductive

Siliceous clusters
   Anoxic
   Anoxic, most
    traces enriched
   Dysoxic, detrital

Trace elements
interpreted as 
indicators of 
depositional
environment

0087
79

00
80

00
82

00
83

00
84

00
85

00

Lithofacies based on 
clusters defined by
XRF major element data,
showing small- and large-
scale stratigraphic
changes
 

0077

40          170 10         1000GR Res

Limestone
Dolomitic limestone*
Argillaceous limestone
Calcareous mixed mudrock
Dolomitic mixed mudrock*
Mixed mudrock
Argillaceous mixed mudrock
Calcareous siliceous mudrock
Dolomitic siliceous mudrock
Argillaceous siliceous mudrock
Biogenic siliceous mudrock*

Lithofacies

Figure 3. Lithofacies based on XRF
major element data. More facies are
present than were observed during
core description (Fig. 1). Small-scale
changes in lithofacies are shown
in Figure 4. Most lithofacies are
cyclic, recurring throughout the cored
interval. Some (*) occur primarily in 
the Wolfcamp and are shown 
separately in Figure 7 as large-scale
stratigraphic changes.
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*more common in the Wolfcamp
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Figure 2. Ternary diagram of calibrated XRF data. Quartz, illite, and
calcite based on Si, Al, and Ca from XRF data (see background 
poster for details). Categorized HCA was applied to data already 
classified into major rock types (limestone, mixed and siliceous 
mudrocks), yielding clusters interpreted from abundance of major 
elements. Presence of dolomite and biogenic silica requires 
confirmation with XRD and/or thin-section study.
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Advantages of cluster analysis:
1) Uses quantitative (elemental XRF) data
2) Treats elemental data as an assemblage, i.e., like a rock
3) With use of partitioning index and analysis of variance, can
determine which elements are most important for defining clusters

Disadvantages of cluster analysis:
1) Results are dependent on the current data set, are not directly 
transferable to other data sets (other cores or basins)
2) A few anomalously high values for a single element can give 
appearance of a cluster dominated by that element
3) Requires repetition to achieve best results

Pros and cons of HCA

Problem statement and objectives
Calibrated X-ray fluorescence (XRF) scanning of core generates large 
amounts of elemental data. Determining which elements are most 
important for characterizing rocks can be daunting. One method in 
use is hierarchical clustering analysis (HCA), which clusters geologic 
data without regard to lithofacies. In contrast, using “categorized” HCA, 
the analyst subdivides the data into categories--major rock types (such 
as limestone, and siliceous and mixed mudrocks)--beforehand. With 
presorted data, categorized HCA avoids grouping disparate rock types 
into clusters based on similar amounts of minor rock constituents, which 
“smears” the distinction between recognized rock types. The goal of this 
work is to develop a systematic approach to analysis of XRF data that 
efficiently incorporates geochemical data into standard core description 
and lithofacies delineation.

Next steps
  Confirm interpretations of lithofacies and clusters with analysis of thin sections and XRD mineralogical data.
  Incorporate confirmed lithofacies and trace-element clusters into revised lithofacies names/descriptions.
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Lithofacies based on core interpretation
and Ca, Si from XRF elemental data

Figure 1. O. L. Greer 1 core log
interpreted at 1-ft spacing, equal
to XRF data collection. Lithofacies
are based on features seen in core
supplemented by XRF data used
to differentiate between calcareous
and siliceous mudrocks. Compare
to more detailed lithofacies
shown by cluster analysis of
XRF data (Figs. 3 and 6).
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