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Abstract

Relative permeability in shales is an important petrophysical parameter for purposes of accurate estimation of production rate
and recovery factor, efficient secondary recovery, and effective water management. We present a method to estimate saturation-
dependent relative permeability in shales based on the interpretation of the low-pressure nitrogen adsorption-desorption isotherm
measurements. Relative permeability were determined for 30 samples from the gas- and oil-window of Eagle Ford and
Wolfcamp shale formations. These sample have low-pressure helium porosity (LPHP) in the range of 0.04 to 0.09 and total
organic content (TOC) in the range of 0.02 to 0.06. The samples were ashed to study the effects of removal of organic matter on
the pore size distribution, pore connectivity, and relative permeability. The estimated irreducible water saturation and residual
hydrocarbon saturation are directly proportional to the TOC and LPHP, and exhibit 15% variation over the entire range. Pore
connectivity, in terms of average coordination number, decreases by 33% with the increase in TOC from 0.02 to 0.06. The
estimated fractal dimension is close to 2.7 for all the samples. The estimated relative permeability of aqueous phase and that of
hydrocarbon phase at a given saturation is inversely proportional to the TOC. Relative permeability curves of the hydrocarbon
phase for geological samples from various depths in a 100-feet interval indicate that the hydrocarbon production rate will vary
drastically over the entire interval and these variations will increase as the hydrocarbon saturations reduce in the formation. In
contrast, relative permeability curves of the aqueous phase suggest limited variation in water production rate over the entire
interval. Further, based on the relative permeability curves, the hydrocarbon production is predicted to be negligible for
hydrocarbon saturations below 50% and the water production is expected to be negligible for water saturations below than 80%.
Efforts are ongoing to use the laboratory-based estimates to predict field-scale production and recovery rates.
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Introduction

> Grain surface (Adsorbent)

» Nitrogen molecule (Adsorbate)

Increasing gas pressure
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Introduction: Mono- vs Multi-Layer Adsorption

Langmuir Equation : Monolayer adsorption
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Introduction: Adsorntlon vs Desornt
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Introduction: Adsorption vs Desorption

Adsorption iotherm of P.S.G at 77K
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Volume adsorbed

Volume adsorbed

Introduction: Isotherm Types
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Introduction: Hysteresis Types
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Motivation

* ldentify permeability jail, decline in hydrocarbon production rate,
and water production in low-permeability reservoirs

« Currently, there are limited direct/indirect laboratory-based
techniques to measure or estimate relative permeability of shales

« Use laboratory adsorption-desorption measurement on shale
samples to estimate pore-size distribution, pore connectivity, and
relative permeability for pore size in the range of 7 nm to 200 nm

« Compare these estimates across oil , condensate, and gas windows
of Eagle Ford shale and Wolfcamp shale

 |Investigate the effects of organic matter on these estimates
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Adsorption-Desorption Isotherm Measurements
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Adsorption-Desorption Isotherm Measurements

Rock Samples

Number of
Formation Maturity TOC, wt% Porosity, % Clay, wt% Non-clay, wt%
samples
44 -70
Wolfcamp | Condensate 8 0.2-155 4.49 -11.52 10-30
Gas 9 0.4-3.3 4.27 —8.33
Eagle Ford 10-20 60 — 80
Qil 6 1.5-49 7.65-10.22
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Adsorption-Desorption Isotherm Measurements

Volume Adsorbed (cc/ig STP)
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Adsorption-Desorption Isotherm Measurements

Effect of removal of organic matter
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Interpretation Methodology

BJH Method

Adsorption-Desorption Isotherm
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Results: Pore Size Distribution

Thickness of adsorbed layer Pore radius in which condensation occurs
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Results: Pore Size Distribution

Incremental Pore Volume (cc/g)
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Results: Pore Connectivity
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Results: Pore Complexity
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Results: Relative Permeability
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Results: Relative Permeability
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Results: Residual Saturations

0.6 ] I I T 0.4 T I I
; O Gas Window
* @ Gas Window-Ashed
~ 0850 X 4 n % 035L° & oil Window 1
u,§ a © Oil wWindow-Ashed
2 S % Condensate
v
§ 05 * 1% OO a 2 *
® & 03— % —
5 s ]
E oas- - 5 ‘g
S
8 o)) é 025 % -
= =
= 041 — %
@ ©
=) O o2 -
S 0.35 O _ 5
b b}
= ]
03l O Gas Window |- ¢ 015 “. =
{> Oil Window
Y Condensate
025, tls Eli ; :; sla 10 o1, (Is fls 110 12
Coordination No. (Z) Coordination No. (2)
06 I @l [
* X
OB
0.55— 7 —
m‘; ® *
S 05 ® 8 =
o .
= Q o
S &
2 o
A5 —
g 0.45 o
: "
= 04 -
°
2
o |
3 0.35 O Gas Window
g ® @ Gas Window-Ashed
= o3k L Oil Window |
N Oil Window-Ashed
J# Condensate
0.25 1 1 L | L

2.4 25 2.6 2.7 2.8 29 3
Fractal Dimension (D)

AAPG-ES 2016 uUniversity ot Oklahoma Misra



[ ] @

MEWBOURNE SCHOOL OF PETROLEUM .“t-

On‘: USIOnS & GEOLOGICAL ENGINEERING o
°l e UNIVERSITY o OKLAHOMA [

 Relative permeability curves exhibit minimal variation with depth

« Samples exhibit large variations in kerogen content, pore
connectivity, range of connected pore network, pore complexity,
and saturations

» Relative permeability estimates support the low water-cut during
hydrocarbon production, absence of correlation between
hydrocarbon production decline and increase in water production,
and existence of permeability jail in shale formations

 Our interpretation methodology indicates that Eagle Ford samples
will have better flow capacity compared to Wolfcamp samples
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