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Abstract

Subsurface electromagnetic (EM) measurements, namely galvanic resistivity, EM induction, EM propagation, and dielectric
dispersion, exhibit frequency dependence due to the interfacial polarization (IP) of clay minerals, clay-sized particles, and
conductive minerals. Existing oil-in-place estimation methods based on subsurface EM measurements do not account for
dielectric permittivity, dielectric dispersion, and dielectric permittivity anisotropy arising from the IP effects. The conventional
interpretation methods generate inaccurate oil-in-place estimates in clay- and pyrite-bearing shales because they separately
interpret the multi-frequency effective conductivity and permittivity using empirical models.

We introduce a new inversion-based method for accurate oil-in-place estimation in clay-and pyrite-bearing shales. The inversion
algorithm is coupled with an electrochemical model that accounts for the frequency dispersion in effective conductivity and
permittivity due to the above-mentioned IP effects. The proposed method jointly processes the multi-frequency effective
conductivity and permittivity values computed from the subsurface EM measurements. The proposed method assumes
negligible invasion, negligible borehole rugosity, and lateral and vertical homogeneity effects.

The successful application of the new interpretation method is documented with synthetic cases and field data. Water saturation
estimates in shale formations obtained with the new interpretation method are compared to those obtained with conventional
methods and laboratory measurements. Conventional interpretation of multi-frequency effective conductivity and permittivity
well logs in a clay- and pyrite-rich shale formation generated water saturation estimates that varied up to 0.5 saturation units, as
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a function of the operating frequency of the EM measurement, at each depth along the formation interval. A joint interpretation
of multifrequency conductivity and permittivity is necessary to compute the oil-in-place estimates in such formations. Estimated
values of water saturation, average grain size, and surface conductance of clays in that formation are in the range of 0.4 to 0.7,
0.5 micrometer to 5 micrometer, and 5x107 S to 9x10™ S, respectively. The proposed method is a novel technique to integrate
effective conductivity and permittivity at various frequencies. In doing so, the method generates frequency-independent oil-in-
place estimates, prevents under-estimation of hydrocarbon saturation, and identifies by-passed zones in shales.
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Introduction: Definition

Conductivity
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Introduction: Definition

Polarization
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Introduction: Downhole EM Tools

Galvanic Induction Propagation Permittivity
100 Hz — 1 kHz 10 — 50 kHz 400 kHz — 2 MHz 20 MHz — 2 GHz
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Introduction: Downhole EM Tools

Effects on EM log measurements

e |nvasion

e Borehole : L.
* Interfacial polarization

e Tool eccentricity
* Frequency dispersion
e Bed boundary

e Resistivity Anisotropy
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Introduction: Pyrites and Clays
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Introduction: Polarization

Frequency dispersions of effective conductivity and permittivity
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Introduction: Polarization

Polarization of polar molecules — Orientation Polarization

Orientation polarization is the only mechanism dominant
around 1 GHz for hydrocarbon-bearing porous geomaterials
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Introduction: Polarization

Interfacial polarization of conductive mineral grains — Metallic IP

Placencia-Gomez et al., 2013 ;)
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Introduction: Polarization

Interfacial polarization of clay particles — Membrane Polarization
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Motivation

Frequency dispersion in effective conductivity and permittivity
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Motivation

Frequency dispersion in conductivity and permittivity
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Conductivity-Permittivity Interpretation
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Permittivity Model
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Conductivity-Permittivity Model

Conductive
inclusion

Misra et al., 2016

Nonconductive
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Conductivity-Permittivity Model

Misra et al., 2016

Alteration in electromlgratlon
Account for charge accumulation and electrodiffusion
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Conductivity-Permittivity Model

Volume fraction of pyrite grains
Bulk conductivity of pyrite
Relative permittivity of pyrite
Diffusion coefficient of pyrite
Radius of pyrite grains
Volume fraction of clay
Relative permittivity of clay
Surface conductance of clay
Radius of spherical clay grains
Volume fraction of sand
Surface conductance of sand
Radius of sand grains
Bulk conductivity of brine
Relative permittivity of brine
Diffusion coefficient of brine
Relative permittivity of hydrocarbon
Water saturation
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Model Predictions

Metallic Nature and Shape of Conductive Inclusions
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Model Predictions

Grain Size of Conductive Inclusions
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Model Predictions

Brine Conductivity and Conductive Inclusion Shape
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Conductivity-Permittivity Inversion

Measurements Model response
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Interpretation of Synthetic Data

Parameter values for | Parameter values for
Parameters
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Interpretation of Synthetic Data

Synthetic Data 1
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Interpretation of Synthetic Data

Synthetic Data 2
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Relative permittivity

Conductivity (S/m)

Interpretation of Synthetic Data

Synthetic Data 1
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Interpretation of Subsurface Data
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Interpretation of Subsurface Data
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Interpretation of Subsurface Data

@1052 ey S :
= 104?_ @ O Synthetic data
'E ® Modeled data based on inverted data
5 10° F @ o
o 2: [ ]
210 o & o
G 101;
@ :

10 10 10 10 10 10

Frequency (Hz)

— 1
£ : ;
D _
- v
E @ '3' 1
+H @)
= &
: . ° 9

104 10° 10° 107 108 10°

Frequency (Hz)

AAPG-ES 2016 University of Oklahoma Misra



Conclusions

Conductivity and permittivity of clay-bearing and conductive-mineral-bearing
samples depend on:

— G@Grain size of conductive inclusions
— Metallic nature of conductive inclusions
— Brine conductivity

— Frequency of the applied EM field

In contrast to EM induction and EM propagation measurements, galvanic
resistivity measurements are:

— Highly sensitive to laminations of clays and conductive minerals

— Non-sensitive to disseminated spherical inclusions of clays and conductive minerals

Dielectric dispersion measurements at operating frequencies higher than 100
MHz are unsusceptible to the effects of interfacial polarization of clays and
pyrite grains.
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« We developed an inversion scheme to jointly process the subsurface galvanic
resistivity (< 1 kHz), EM induction (10 — 100 kHz), EM propagation (400 kHz —
10 MHz), and dielectric dispersion (10 MHz — 1 GHz) logs

« We presented a proof-of-concept exercise to assess water saturation, brine
conductivity, surface conductance of clays, average grain size of clays, and
average grain size of pyrite inclusions.

« The proposed joint inversion improves the accuracy of petrophysical
interpretation of EM measurements by eliminating the effects of interfacial
polarization of clays and pyrite inclusions.
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