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Abstract 

 

Subsurface electromagnetic (EM) measurements, namely galvanic resistivity, EM induction, EM propagation, and dielectric 

dispersion, exhibit frequency dependence due to the interfacial polarization (IP) of clay minerals, clay-sized particles, and 

conductive minerals. Existing oil-in-place estimation methods based on subsurface EM measurements do not account for 

dielectric permittivity, dielectric dispersion, and dielectric permittivity anisotropy arising from the IP effects. The conventional 

interpretation methods generate inaccurate oil-in-place estimates in clay- and pyrite-bearing shales because they separately 

interpret the multi-frequency effective conductivity and permittivity using empirical models. 

 

We introduce a new inversion-based method for accurate oil-in-place estimation in clay-and pyrite-bearing shales. The inversion 

algorithm is coupled with an electrochemical model that accounts for the frequency dispersion in effective conductivity and 

permittivity due to the above-mentioned IP effects. The proposed method jointly processes the multi-frequency effective 

conductivity and permittivity values computed from the subsurface EM measurements. The proposed method assumes 

negligible invasion, negligible borehole rugosity, and lateral and vertical homogeneity effects. 

 

The successful application of the new interpretation method is documented with synthetic cases and field data. Water saturation 

estimates in shale formations obtained with the new interpretation method are compared to those obtained with conventional 

methods and laboratory measurements. Conventional interpretation of multi-frequency effective conductivity and permittivity 

well logs in a clay- and pyrite-rich shale formation generated water saturation estimates that varied up to 0.5 saturation units, as 

mailto:misra@ou.edu


a function of the operating frequency of the EM measurement, at each depth along the formation interval. A joint interpretation 

of multifrequency conductivity and permittivity is necessary to compute the oil-in-place estimates in such formations. Estimated 

values of water saturation, average grain size, and surface conductance of clays in that formation are in the range of 0.4 to 0.7, 

0.5 micrometer to 5 micrometer, and 5×10
-7

 S to 9×10
-7

 S, respectively. The proposed method is a novel technique to integrate 

effective conductivity and permittivity at various frequencies. In doing so, the method generates frequency-independent oil-in-

place estimates, prevents under-estimation of hydrocarbon saturation, and identifies by-passed zones in shales. 
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Introduction: Definition

Polarization

Dispersion
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Introduction: Downhole EM Tools
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Introduction: Downhole EM Tools

• Invasion

• Borehole

• Tool eccentricity

• Bed boundary

• Resistivity Anisotropy

• Interfacial polarization

• Frequency dispersion

Effects on EM log measurements
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Introduction: Pyrites and Clays
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Frequency dispersions of effective conductivity and permittivity
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Anderson et al., 2007

Introduction: Polarization
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Polarization of polar molecules – Orientation Polarization

Introduction: Polarization

E ≠ 0E = 0

Orientation polarization is the only mechanism dominant 

around 1 GHz for hydrocarbon-bearing porous geomaterials
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Placencia-Gomez et al., 2013

Interfacial polarization of conductive mineral grains – Metallic IP

Width of view = 1.38 mm

Introduction: Polarization

Metallic IP effects are negligible beyond 1 MHz
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Revil et al., 2012

Interfacial polarization of clay particles – Membrane Polarization

Membrane Polarization effects are negligible beyond 1 MHz

Introduction: Polarization
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𝝈𝐞𝐟𝐟𝜺𝐫,𝐞𝐟𝐟

Wang and Poppitt, 2013

Frequency dispersion in effective conductivity and permittivity
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Frequency dispersion in conductivity and permittivity
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Conductivity-Permittivity Model

Misra et al., 2016
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Conductive 

inclusion

Nonconductive 

inclusion

Misra et al., 2016

Conductivity-Permittivity Model
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Alteration in electromigration
Account for charge accumulation and electrodiffusion

Misra et al., 2016

Conductivity-Permittivity Model
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PS Model

Input Parameters 
Volume fraction of pyrite grains

Bulk conductivity of pyrite

Relative permittivity of pyrite

Diffusion coefficient of pyrite

Radius of pyrite grains

Volume fraction of clay

Relative permittivity of clay

Surface conductance of clay

Radius of spherical clay grains

Volume fraction of sand

Surface conductance of sand

Radius of sand grains

Bulk conductivity of brine

Relative permittivity of brine

Diffusion coefficient of brine

Relative permittivity of hydrocarbon

Water saturation

Conductivity-Permittivity Model
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200 μm

1 mm

Spheres

Laminations

Model Predictions
Metallic Nature and Shape of Conductive Inclusions

Conductive Inclusions (5%)
+

Silica grains (70%)
+

Brine (0.1-S/m) 
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Model Predictions

Grain Size of Conductive Inclusions

Conductive Inclusions (5%)
+

Silica grains (70%)
+

Brine (0.1-S/m) 

Spheres
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Conductive Inclusions (5%)
+

Silica grains (70%)
+

Brine (0.1-S/m) 

Model Predictions
Brine Conductivity and Conductive Inclusion Shape

P1

P2

P3

200 μm

1 mm

20 μm

0.001 S/m

1 S/m
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PS Model

Conductivity-

Permittivity 

Inversion

Known Parameters 
Volume fraction of pyrite grains Volume fraction of sand

Bulk conductivity of pyrite Surface conductance of sand

Relative permittivity of pyrite Radius of sand grains

Diffusion coefficient of pyrite Relative permittivity of brine

Volume fraction of clay Diffusion coefficient of brine

Relative permittivity of clay Relative permittivity of hydrocarbon

Estimated Parameters 

Water saturation

Bulk conductivity of brine

Surface conductance of clay

Radius of spherical clay grains

Radius of pyrite grains

Conductivity-Permittivity Inversion
Measurements Model response
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Parameters Unit
Parameter values for 

Synthetic Data 1

Parameter values for 

Synthetic Data 2

Volume fraction of pyrite grains % 1 5

Bulk conductivity of pyrite S/m 1000 1000

Relative permittivity of pyrite 30 30

Diffusion coefficient of pyrite m2/s 10-6 10-6

Radius of pyrite grains µm 100 30

Volume fraction of clay % 60 30

Relative permittivity of clay 5 5

Surface conductance of clay S 10-6 5×10-6

Radius of spherical clay grains µm 1 0.3

Volume fraction of sand % 19 45

Surface conductance of sand S 10-9 10-9

Radius of sand grains µm 500 500

Bulk conductivity of brine S/m 0.1 3

Relative permittivity of brine 80 80

Diffusion coefficient of brine m2/s 10-9 10-9

Relative permittivity of hydrocarbon 3 3

Water saturation % 10 20

Interpretation of Synthetic Data
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Synthetic Data 1

Interpretation of Synthetic Data
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Synthetic Data 2

Interpretation of Synthetic Data
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Synthetic Data 1

Synthetic Data 2

Interpretation of Synthetic Data
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Interpretation of Subsurface Data
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Interpretation of Subsurface Data
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Interpretation of Subsurface Data
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Conclusions

• Conductivity and permittivity of clay-bearing and conductive-mineral-bearing
samples depend on:

– Grain size of conductive inclusions

– Metallic nature of conductive inclusions

– Brine conductivity

– Frequency of the applied EM field

• In contrast to EM induction and EM propagation measurements, galvanic
resistivity measurements are:

– Highly sensitive to laminations of clays and conductive minerals

– Non-sensitive to disseminated spherical inclusions of clays and conductive minerals

• Dielectric dispersion measurements at operating frequencies higher than 100
MHz are unsusceptible to the effects of interfacial polarization of clays and
pyrite grains.
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• We developed an inversion scheme to jointly process the subsurface galvanic
resistivity (< 1 kHz), EM induction (10 – 100 kHz), EM propagation (400 kHz –
10 MHz), and dielectric dispersion (10 MHz – 1 GHz) logs

• We presented a proof-of-concept exercise to assess water saturation, brine
conductivity, surface conductance of clays, average grain size of clays, and
average grain size of pyrite inclusions.

• The proposed joint inversion improves the accuracy of petrophysical
interpretation of EM measurements by eliminating the effects of interfacial
polarization of clays and pyrite inclusions.

Conclusions
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