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Abstract 

The interpretation of discrete stratigraphic features on seismic data is limited by both its bandwidth and its signal-to-noise ratio. Unfortunately, 

well resolved reflections from the top and base of subtle stratigraphic geologic boundaries occur only for thick features imaged by broad band 

data. Seismically thin stratigraphic features approaching a quarter wavelength thickness give rise to composite or “tuned” seismic reflections. 

Different spectral decomposition methods provide an effective way of examining the seismic response of stratigraphic geologic features in 

terms of spectral components and so help in the interpretation. The phase components help with the interpretation of the discontinuity features 

as well as stratigraphic features such as onlap, offlap, and erosional unconformities.  

In this study we first illustrate the applications of a newer attribute derived during spectral decomposition, called voice components, in terms of 

more accurate interpretation of the subsurface features. We follow this by describing an amplitude-friendly method for spectral balancing, 

which enhances the frequency content of the data and at the same time preserves the geologic tuning features and amplitudes. Spectral 

decomposition of seismic data that are spectrally balanced and interpreted in terms of the voice components leads to more accurate definition of 

the features of interest. We demonstrate some of these applications, and in particular the detailed definition of faults and fractures. Such 

discontinuity information can be interpreted better on coherence attribute displays in the zone of interest. Coherence attribute computation 

performed on spectral decomposition after spectral balancing yields higher detail with regard to the faults and fractures or other discontinuity 

features such as channels, reefs, etc. 
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Summary
In this study we first illustrate the applications of a newer attribute derived during spectral 
decomposition, called voice components, in terms of more accurate interpretation of the 
subsurface features.  

We follow this by describing an amplitude-friendly method for spectral balancing, which 
enhances the frequency content of the data and at the same time preserves the geologic 
tuning features and amplitudes.  Spectral decomposition of seismic data that are 
spectrally balanced and interpreted in terms of the voice components leads to more 
accurate definition of the features of interest.  

We demonstrate some of these applications and in particular the detailed definition of 
faults and fractures.  Such discontinuity information can be interpreted better on 
coherence attribute displays in the zone of interest.  

Coherence attribute computation performed on spectral decomposition after spectral 
balancing yields higher detail with regard to the faults and fractures or other discontinuity 
features such as channels, reefs, etc.

Spectral decomposition
The including the following:

1. Traditional short window discrete Fourier transform, 

2. The continuous wavelet transform (CWT), 

3. The S-transform, and 

4. The matching pursuit transform 

 at every time-
frequency sample.  The analysis of such spectral magnitude and phase components is 
equivalent to interpreting the subsurface stratigraphic features at different scales 
(Figure 1).  

different spectral decomposition methods 

All these compute the spectral magnitude and phase components

Figure 1: Typical workflow for spectral decomposition carried out using the continuous 
wavelet transform method.  The output includes spectral magnitude, phase, and voice 

component volumes.

Figure 2: Complex wavelets used in the 
complex wavelet transform. The (top) real 

0and (bottom) imaginary (or 90 -phase 
rotated) wavelets are simply convolved with 
the input seismic trace about each sample 

Hto form v(t,f) and v (t,f). The convolution with 
the real wavelets provides the voices, v(t,f), 
such as the  30 Hz voice shown in the next 
figure. The spectral magnitude, a(t,f), is 

2 H 2 1/2defined as m(t,f)={[v(t,f)] +[v (t,f)] }  while 
the spectral phase is defined as 

Hφ(t,f)=ATAN2[v (t,f),v(t,f)] and ranges 
0 0between -180  and +180  (examples shown 

in Figure 4).

The mother wavelet chosen for CWT spectral decomposition, e.g. the Morlet wavelet, is 
a complex function (Sinha et al., 2003) (Figure 2).  As a result, the 

. Thus when 
 is carried out on seismic data, it 

.  

The spectral magnitude represents the energy that correlates with the trace, and the 
phase represents the phase rotation between the seismic trace and the Morlet wavelet 
at each instant of time.  

spectral 
components obtained from CWT are also complex spectral 
decomposition yields the spectral magnitude and 
phase at each time-frequency sample

Goupillaud et al. (1984) showed that the CWT process preserves the signal energy and 
is reversible

Thus the signal can be reconstructed from the CWT coefficients as a convolution along 
the scales used in the transformation plus an integration along time. In addition to 
magnitude and phase, one can readily compute the spectral voices (e.g. Marfurt and 
Matos, 2014), at every time-frequency sample.  

In this study, 

Another traditional use of time-varying Fourier transforms is spectral balancing. Trace 
by trace time-varying spectral balancing improves vertical resolution but destroys 
relative amplitudes. 

We d

we discuss the value of such spectral voices in subsequent 
attribute calculation.

iscuss an amplitude-friendly method for flattening the amplitude spectra 
of the input data and show its applications as well.
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Voice components from CWT spectral decomposition
Objectives

    
1.  To introduce a newer attribute derived during spectral decomposition, called voice component, that proves useful for
     accurate interpretation of the subsurface features.

2.  Describe an amplitude-friendly method for spectral balancing, which enhances the frequency-content of the seismic
      data.
3.  Demonstrate applications in terms of detailed definition of faults and fractures.

In addition to the spectral and phase components, Goupillaud et al. (1984) introduced another component, 
called the voice component, which is a simple function of spectral magnitude, m, and phase ϕ,  at each 
time-frequency sample and is given by 

The real part of the sum over all frequencies, f, of all these voice components reconstructs the original 
trace. Since the voice components are band-pass filtered versions of the original seismic data (Fahmy et 
al., 2008) application to map subtle hydrocarbon features can be viewed as analysis of the spectral voices.

After choosing an appropriate mother wavelet (Chopra and Marfurt, 2015) the scaled members of the 
wavelet family are defined by simple scaling and shifting of the mother wavelet.  

Cross-correlating the member wavelets with the original seismic trace generates the spectral voice 
components.  

For the continuous wavelet transform, the voice components are equivalent to narrow bandpass filtered 
versions of the input seismic data.    We show the 30 Hz voice component section in Figure 3 along with the 
magnitude spectrum of the 30 Hz wavelet.

.

Such voice components offer more information that can be subsequently processed and interpreted.  

In Figure 4a we show a vertical slice through a 3D seismic volume from northern-central Alberta, Canada.  The 
equivalent slices through the spectral magnitude, phase, and voice components at 65 Hz are shown in Figures 
4b, c and d that highlights fault discontinuities not seen in the original broadband data (or in most of the lower 
spectral components).  Notice that the vertical discontinuity information is not clearly seen on the spectral 
magnitude, but rather on the phase component. 

  This observation could be exploited to our advantage by either 
interpreting the discontinuity information as such or by running a discontinuity attributes such as coherence on 
the voice component volume.

The voice component combines both attributes and 
nicely delineates the discontinuities.

Figure 4: Vertical slices through (a) original 3D seismic amplitude and corresponding 65 Hz (b) spectral magnitude, (c) 
spectral phase, and (d) spectral voice component volumes. 

 The voice component has the advantage that it can 
be easily interpreted and processed (e.g. using coherence) as one would the original seismic amplitude data. (Data 
courtesy: Arcis Seismic Solutions, TGS)

Notice the vertical discontinuities in the highlighted 
portion are poorly seen in the original broadband data, are not seen in the spectral magnitude component, but 
are clearly seen in the spectral phase and voice components.

Spectral balancing of seismic data in an amplitude-friendly way

In this method, the data are first decomposed into time frequency spectral components.  The power of the spectral magnitude, 
2P(t, f) = m(t,f) , is averaged over all the traces (j= 1,…K) in the data volume spatially and in the given time window, which yields 

a smoothed average power spectrum, given by . 
 
Next, the peak of the average power spectrum, , is also computed.  

Both the average spectral magnitude and the peak of the average power spectrum are used to design a single time-varying 
spectral balancing operator that is applied to each and every trace in the data.
 

where ε  is the prewhitening parameter.

Such spectral balancing is amplitude-friendly since a single time-varying wavelet is applied to the entire data volume. 

Figure 5 shows vertical slices through a seismic amplitude volume before and after spectral balancing. The spectra were 
computed at 5 Hz intervals ranging from 5 to 120 Hz. The balancing was computed using a value of ε =0.04. The individual 
amplitude spectral before and after are shown as insets.  Notice that after spectral balancing the seismic section shows higher 
frequency content and the amplitude spectra is flattened. 

Encouraged with the higher frequency content of the data, we run energy ratio coherence (Chopra and Marfurt, 2008) on the 
input data as well as the spectrally balanced version of the data.  The results are shown in Figures 6a, and b, where we notice 

.

Finally, we run the spectral decomposition on spectrally balanced version of the input seismic data, and put the voice 
components through to energy ratio coherence computation.  

In Figures 6c, d, and e we show equivalent time slices computed from the 65, 75 and 85 Hz voice component volumes.  Notice 
the clarity in the definition of the discontinuities on the displays.  

P (t, f)avg

P (t)peak

better definition of the NNW-SSE faults as well as the faults/fractures in the E-W direction on the coherence run on spectrally 
balanced version

Such data lead to better interpretation of the 
discontinuities than carrying out the same exercise of the input data.

,
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Figure 3: A vertical slice through the 30 Hz voice component after spectral decomposition with spectral balancing 
and its amplitude spectrum.  Notice the frequency width on both sides of the amplitude maxima seen at 30 Hz.  

(Data courtesy: Arcis Seismic Solutions, TGS)
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Figure 5: A vertical line through a seismic amplitude volume (a) before, and (b) after spectral 
balancing. Note the small channel (yellow circle) and clear edge (green circle) and improved 
vertical resolution (cyan ellipse). (Data courtesy: Arcis Seismic Solutions, TGS)

Figure 6: Time slices at 1322 ms through  coherence computed from seismic data  (a) before and 
(b) after spectral balancing, and from the (c) 65 Hz, (d) 75 Hz, and (e) 85 Hz voice components. 
Coherence computed from the 65, 75, and 85 Hz components clearly shows the lineaments 
corresponding to the faults and fractures. (Data courtesy: Arcis Seismic Solutions, TGS)

Conclusions

We conclude that 

(1) Voice components derived from spectral decomposition of input seismic data

. 

(2) S
, which in turn exhibits detailed definition of faults and 

fractures.  

3) Such discontinuity information can be interpreted better on coherence displays in 
the zone of interest.  

4) 

 or other discontinuity features such as channels, reefs, etc.

 
furnish detailed and crisp information at specific frequencies that is amenable to 
more accurate interpretation

pectral balancing of seismic data when performed in an amplitude-friendly 
way leads to broader band data

Coherence attribute computation performed on spectral voice components 
after spectral balancing yields higher detail with regard to the faults and 
fractures
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