">Kinematics and Growth of Supra-Salt Systems: A Field and Subsurface Analysis, Paradox Basin*
Elizabeth Horne® and Bruce Trudgill*

Search and Discovery Article #30515 (2017)**
Posted August 21, 2017

*Adapted from poster presentation given at 2017 AAPG Annual Convention & Exhibition, Houston, Texas, April 2-5, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

Colorado School of Mines, Golden, Colorado (elilyhorne@gmail.com)

Abstract

Salt can provide the structure and seal necessary for hydrocarbon entrapment, however, it may lead structural complexities, such as
compartmentalizing a hydrocarbon reservoir through supra-salt faulting. Outcrop analog studies provide exceptional opportunities to observe
how salt-influenced fault geometries evolved spatially and temporally. The Paradox Basin in southeastern Utah is an example of a salt-
influenced petroleum basin where the petroleum system is directly associated with evaporites. Decades of petroleum exploration in the region
have yielded in a broad subsurface dataset (e.g. seismic reflection data and well penetrations), with close proximity to world-class outcrops.
Exposed supra-salt fault scarps have preserved kinematic evidence which provide tangible evidence to populate kinematic models that quantify
the temporal and spatial evolution of this fault system.

This study focuses on the Salt Valley salt wall, the northernmost and largest salt structure within the northern Paradox Basin. A 40 km long
supra-salt fault array trends parallel to and detaches downward onto the NW-plunging salt wall. Through the use of 3D seismic reflection data,
wells, published maps, satellite imagery, and a collection of structural field measurements, we are able to build a database that was used to
make an integrated interpretation of the spatial and temporal evolution of the fault array.

Several kinematic analyses coupled with detailed geometric fault descriptions were used to determine the growth history of the studied fault
array that consists of a series of overlapping fault segments up to 12.5 km long, with throws of hundreds of meters, defining a series of crestal
grabens and half-grabens. Secondary faults of similar length are present on the flanks of the salt wall. Along the strike of the fault array, there
are notable changes in the dip direction of the half-graben master faults and regions of varying fault strikes. These changes reflect
heterogeneities of the top-salt geometry.

Fault linkage analyses such as: fault throw-length (T-L); throw-distance (T-x); throw-depth (T-z), as well as qualitative distribution of fault
throws from map and strike views show that these segments are over-displaced, with a complex fault segment linkage history. We hypothesize
that these over-displaced faults evolved with a hybrid fault growth model, where they initiated as isolated fault model but spent the majority of
their growth history through coherent fault growth.
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Abstract

Salt can provide the structure and seal necessary for hydrocarbon entrapment, however, it may
lead structural complexities, such as compartmentalizing a hydrocarbon reservoir through
supra-salt faulting. Outcrop analog studies provide exceptional opportunities to observe how salt
influenced fault geometries evolved spatially and temporally. The Paradox Basin in southeastern
Utah is an example of a salt-influenced petroleum basin where the petroleum system is directly as-
sociated with evaporites. Decades of petroleum exploration in the region have yielded in a broad
subsurface dataset (e.g., seismic reflection data and well penetrations), with close proximity to
world-class outcrops. Exposed supra-salt fault scarps have preserved kinematic evidence which
provide tangible evidence to populate kinematic models that quantify the temporal and spatial evo-
lution of this fault system.

This study focuses on the Salt Valley salt wall, the northernmost and largest salt structure within
the northern Paradox Basin. A 40 km long supra-salt fault array trends parallel to and detaches
downward onto the NW-plunging salt wall. Through the use of 3D seismic reflection data, wells,
published maps, satellite imagery, and a collection of structural field measurements, we are able to
build a database that was used to make an integrated interpretation of the spatial and temporal
evolution of the fault array.

Several kinematic analyses coupled with detailed geometric fault descriptions were used to deter-
mine the growth history of the studied fault array that consists of a series of overlapping fault seg-
ments up to 12.5 km long, with throws of hundreds of meters, defining a series of crestal grabens
and half-grabens. Secondary faults of similar length are present on the flanks of the salt wall.
Along the strike of the fault array, there are notable changes in the dip direction of the half-graben
master faults and regions of varying fault strikes. These changes reflect heterogeneities of the
top-salt geometry.

Fault linkage analyses such as: fault throw-length (T-L); throw-distance (T-x); throw-depth (T-z), as
well as qualitative distribution of fault throws from map and strike views show that these segments
are over-displaced, with a complex fault segment linkage history. We hypothesize that these
over-displaced faults evolved with a hybrid fault growth model, where they initiated as isolated
fault model but spent the majority of their growth history through coherent fault growth.

Research Objectives

Geologic Context

Methods and Analyses

Produce a detailed geologic map of the Salt Valley salt wall
Build a water-tight 3D structural framework of the subsurface Salt Valley salt wall
Identify geometric similarities between surficially-mapped and subsurface faults

Conduct throw distribution studies on linked subsurface fault zones to determine fault
growth histories

Advance understanding of the spatial and temporal evolution of the supra-salt fault array
in Salt Valley

Conduct statistical analyses to identify style of deformation and mechanism of fault
initiation

Motivation

Many of the world’s largest hydrocarbon provinces are pres-
ent within salt basins (e.g., Gulf of Mexico, North Sea, Per-
= sian Gulf, Campos Basin and Pricaspian Basin) (Hudec and

Jackson, 2007).

1 Evaporitic minerals, such as halite (NaCl), possess unique
1= physical and chemical properties which can affect multiple
aspects of a petroleum system (i.e., thermally conductive,
incompressible, diffusive, etc.). Salt is mechanically weak at
shallow depths and accommodates strain and displacement
through ductile flow (Hudec and Jackson, 2007).

Equal-area Mollweide projection showing global
distribution of basins containing salt structures
(dark-gray polygons) (Hudec and Jackson,
2007).

These volumes can:

¢ Form décollements

¢ Decouple sub- and supra-salt faulting (Morley et al., 2003)

* Inhibit the lateral and vertical propagation of faults
(Richardson et al., 2005)
Impact the presence, stratal geometry and distribution of
sedimentary systems (Giles and Lawton, 2002; Kluth and
Duchene, 2009; Hearon, 2013)

¢ Control timing of source maturation

¢ Provide seal for fluid migration (Hudec and Jackson, 2007)

The Paradox Basin in SE Utah is a salt-influenced petro-
leum basin where the petroleum system is directly associ-
ated with evaporites.

~SOudiar Urmas

Small-scale petroleum production is present throughout the
basin with a majority of production in the southwest (Ste-
venson and Wray, 2009).
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Location map of the Paradox Basin, Utah, Colorado,
Arizona and New Mexico showing producing oil and
gas fields, the Paradox fold and fault belt, and Bland-
ing sub-basin as well as surrounding Laramide
basins and uplifts. Modified from Harr, 1996.

As a result, the entire basin has been subjected to different
levels of petroleum exploration (e.g., 2D & 3D seismic re-
flection data collection, wild-cat well penetrations), adja-
cent to world-class outcrops.
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Paleogeographic and plate tectonic reconstruction of west-
ern North America during the middle Pennsylvanian (~310

Ma) Modified from Trudgill, 2011.
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Gravity gradient map from (Banbury, 2005) after data
from Case and Joesting (1972), modified from (Trudgill,

2011).

Location map of northern Salt Anticline region of the Par-
adox Basin.The bold black line highlights the approxi-
mate location of cross-section A-A’, which illustrates

stratigraphic architecture and salt wall geometries in
northern Paradox basin. Light blue polygons highli
evaporite bodies in both map and cross-secti

Map after Doelling, 1983; Trudgill et. al, 2004; modified
from Trudgill and Arbuckle, 2009 and Lehmann, 2015.
Cross-section modified from Trudgill, 2011.

The Paradox Basin is an asymmetric foreland basin that developed during the Ancestral Rocky
Mountain orogeny during the Late Pennsylvanian — Permian (Barbeau, 2003).

This basin is characterized by a vast volume of evaporites (up to ~2500 m) that were deposited
within the subsiding footwall of the Uncompahgre Uplift. Rapid deposition of clastic material shed
from the Uncompahgre Uplift mobilized Paradox evaporites into elongate, diapiric, salt walls that
trend subparallel to the northwest-trending thrust front.

These accumulations are recognizeable in gravity gradient maps and aerial extents have been docu-

mented in published maps and cross sections.
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Tectonic Evolution of the Paradox Basin
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Prior to the Ancestral Rocky Mountain orogeny, this region underwent crustal exten-
sion in the Proterozoic. This extension resulted in the formation of northwest trend-

ing basement-involved faults that were subsequently reactivated during Pennsylva-
nian-Permian Ancestral Rocky Mountains.

Basin & Range
Extension

Initiation of
CO Plateau Uplift

The Laramide orogeny in the Late Cretaceous to early Eocene is responsible for
much of the deformation in western North America. Though several structures
formed and were reactivated in this event, (e.g., the Uncompahghre thrust and the
San Rafael Swell) the Laramide fold and fault belt bypassed much of the Colorado
Plateau (Barbeau, 2003). Specifically, it is thought that the principal structures of the
Paradox Basin show negligible amounts of structural disturbance from the Lara-
mide, and more importantly, the salt structures were amongst the least affected from
this compressional period (Barbeau, 2003)

Laramide Orogeny

Ancestral Rocky
Mountain Orogeny

Uplift of the Colorado Plateau initiated in the Miocene, overlapping with Basin and
Range extension

The aerial limits of the elongate salt walls are coincident with presalt structures. Pre-
cambrian basement normal faults bound these walls to the northeast and southwest
with secondary, northeast-trending basement fabric that further compartmentalizes
the extent of the salt walls (Hite, 1975; Warner, 1978).

*dates compiled in
Hissem, 2016

STRATIGRAPHIC COLUMN OF THE NORTHERN SALT VALLEY ANTICLINE
NORTHERN PARADOX BASIN, UTAH
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Modified from Doelling and Kuehne, 2013

3D Framework Modeling

Subsurface Methods:

3D seismic interpretation
1) Seismic attribute analysis
Enhance acoustic impedance contrasts to better
image: horizon reflectors, voids created by
faulting, and top-salt surface
2) Fault interpretations
» Fault geometries/ detachment surfaces
« Locations displaying fault segment link-up
3) Horizon interpretations
» Gridded horizons
* Identify growth strata
» Top-salt geometry & heterogeneities
4) Construct 3D Structural Framework
5) Generate velocity model for depth conversion

"s Annotated Inline # 243

Database:

3D Seismic Survey (18.1 km2)
* 541 inlines
* 328 crosslines
* Line spacing: 33.5 m (110 ft)

Borehole data (23 wells)
* Most contain basic wireline log and checkshot surveys
» Very sparse TD data

Cultural Data:

* Published maps & cross-sections (geotiffs, shapefiles)
» High-resolution aerial imagery

» Digital elevation models (DEM’s)

. Well Locations

l 5 kilometers

" Inline # 243 Orig. Amplitude Volume

Subsurface Analyses

Polarity
e

ik

1

Static structural characterization
of the SVA suprasalt fault
system
1) Structural Orientations
2) Fault length vs. throw
distribution
3) Fault throw vs. depth
4) Changes in throw =
gradients along strike :

= Continuous |
= Reflectors 3

Discontindous:
Volume

Pre-Paradox Salt

Field Mapping

s 2

=
=

Panoramic view the northeastern margin of the salt valley salt wall. This image captures typical outfopping patterns and geometries of Meso-
zoic strata, as well as exhibits ... ability to map in the field... lithologies on
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Methodology:

Collect key structural measurements:
Strike & dip
Bedding
Fault surfaces
Trend & plunge
Slikenlines

* Measurements compiled into stereonet
diagrams to identify paleo-stress orien-
tations and kinematic axes

» Documentation of exposed strati-
graphic contacts

» Record changes in facies and unit
thicknesses

» Compare to published maps & struc-
tural measurement's

* Integrate collected field data with
subsurface framework
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Field Measurements Stratigraphic Contacts
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» Photography of key outcrop expo-
sures

Field photos highlighting various outcropping structures.
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Surface Structure Maps
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Field Results Synthesis of Field and Subsurface Results

Ty, DU Regional Observations Crestal Geometry of the Salt Valley Salt Wall: Surface Asymmetries
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black lines define the traces of outcropping faults. Yellow circles represent locations -4 3 Y mapped faults. Colored arows signify the pping P s 99
3 mean vector of the four main fault trends

of field measurements, used to conduct kinematic analyses. 2 i L) . . .
- S e - _ | : Reglonal Observations: Crestal Geometry of the Salt Valley Salt Wall: Plunge

* Dominant fault fabric is NW-SE striking, dipping E and W
» These are the longest faults with greatest throws Salt Valley salt wall
+ Are mapped at the highest frequency both in the field and in the subsurface e ) . . . o ) Master Fault Orientations
« Orientation of underlying salt wall is subparallel to these faults ' am N\ &)
» E-W striking faults are present off the crest of the salt wall in the subsurface dataset e — - = =] NW-E

3D view of fault segments in East- and West-dipping fault zones that detach M ;
- ” ap view of top-Paradox Salt surface.
downward onto the Top Paradox Salt sul.'face. Labe!s highlight regions where the Surface asymmetries are visible from this view.
crest of the Top-Paradox Salt is symmetric and asymmetric.
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Zoom-in to inset (b) highlighting the fault used for the NW-E kinematic analysis. Fault
orientations are shown in black symbols, outlined in white. Slickenline arrows point in
direction of plunge. Fault plane dip orientations are labeled in white.
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Inset maps highlighting field measurements collected in the o
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: Throw- Segment Length (T-L) cross-plot showing where the subsurface . h \
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P faults plot with respect to the global fault database. Compared to the global Mode|ed?Zﬁﬂ?ﬁ,ﬁ[,ﬂ?smalr'giﬁt present V= i o (1) southeastern-most domain covers 32% of the length of the salt walll,

t“g”"a' fault da‘sste" thedf?”'lts mgpp,ter? in the S“b,su";alce 1‘;0_’1“0’1? t?ri]s throughout the entire fault array, but only 3 with an average plunge of 2 degrees to the northwest.
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) Symmetric Crest: graben fault pattern

) Asymmetric Crest: half-graben east-dipping master fault
) Asymmetric Crest: half-graben east-dipping master fault
)
)
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Symmetric Crest: graben fault pattern

Asymmetric Crest: half-graben east-dipping master fault
Faults do not detach on salt, fault pattern is dominated by
north- and south-dipping faults
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T — FADLY PLAE SOLITON (W ) * Has alot of variation in orientation Over-displacement of faults can be caused by one or a combination This discrepancy alludes to this array
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soze Lissolons L 7 2907 [oas [ozas] oaa ] TR | s0s oblique slip motion that can inhibit lateral fault propagation. In order to determine if one ized strain (i.e. salt movement) rather than \ \ _F R for 7% and 20% of the top-salt length, respectively.

03942 | 257.1| 708

N=38 . . .

or both of these mechanisms may be affecting this fault system, we a uniform strain distribution that would be X . - o

s EX::‘D’::::’&”SWW Mean resultant plane stereonet reveals can refer to previous work completed on normal faults in the world, caused by regional extension. Thus, this \ % - (6) Abrupt change in Elunge for the remaining 14% of the top-salt crest,
ey s e e @ o oo oblique movement along fault and to more local studies. graph cannot be used to predict the fre- plunging 33° to the northwest.
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Fault Growth Role of Inherited Structures Conclusions

e o m m R h nducted on the Salt Vall It fault h Ited in:

® salt Structures i H ithi H i H -

This research has focused on characterizing the geometric arrangement, nucleation, and evolution R oy | Base er_1t-|nvolved _faults_have influenced many structures within the Pal_'adox Basin, including esearch conaucted o € oa alley supra-salt fault array nave resulited In:
the locations and orientations of the elongate salt walls and could potentially control the loca-

of a supra-salt fault array in the northern Paradox Basin. A ~ o g tits | h
e A e | tiONS of supra-salt faulting. . e . . . . .
j The identification of four dominant fault orientations, present throughout the entirety of the

16 kiomelers
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CACHE VALLEY ,

There are two overarching controls that have influenced the nucleation and growth of the supra-salt > | e, G,? The dominant northwest-southeast structural trends documented throughout the Paradox Basin
fault array, the first being the role of salt, and the second being the influence of inherited structures.  ‘FIsHER GOA have been attributed to Mississippian-aged flexural normal faults which deform crystalline base- researCh area.
V3 VALLEY . . . . .
QA} ment and pre-Paradox stratigraphic section (Barbeau, 2003). These basement-involved faults The generation of a 3D structural framework of the Salt Va||ey’s Supra_sa|t fault system

Based on observations from this research, the faults with the greatest throws are listric in geometry LhsaLums have been interpreted to act as basinward-flow barriers, for the elongate evaporitic salt walls in ) .. . b
and detach onto Top Paradox Salt. These faults nucleated as a response to localized strain from Rty the basin constrained by 3D seismic reflection su rvey and borehole penetratlons.

withdrawal and/or dissolution of the underlying salt wall. In present day, these faults are over-dis- . . . . . . .
ying P y In addition to this NW-SE trending fault system, magnetic data, seismic reflection data, as well The execution of quantltatlve analyses (e-g-’ fault throw-length (T—L), throw-distance (T'X)’

placed. . . ; . N . . ..
‘ as published work have suggested that there is a secondary basement fabric that may have sig- throw_depth (T—Z); and throw variation a|ong strike and between strat|graph|c |nterva|s) to

A hypothesis for the development of this over-displacement is that fault growth initiated according to S nificant control on the placement of salt within the Paradox Basin. Specifically, this secondary : : :
yP P ’ g ; fabric is thought to control the northwestern and southeastern lateral terminations of the elon- determine the complex fault Segment “nkage hIStOI'y of the SUpra'SaIt fault SyStem-

the isolated fault model, but asymmetries in the crestal geometry of the Paradox Salt created local- . . .
ized strain, creating heterogeneous fault geometries, and barriers in lateral fault growth, causing gate salt walls. The construction of a more-accurate su b-reglonal geologlc contact map of the northwestern

link-up early in growth history. Onae linked, these fault linkages grew in accordance to the coherent These underlying ENE-SWS trending basement fabric influences the locations of salt wall termi- Salt Valley, which incorporates published data points, digitally-collected field measurements,

fault growth model. This hybrid fault growth model has been described previously by (Jackson and Simplistic ilustration of the NW-trending and NE-trending Colorado' Linament base-  nations, and may also inhibit lateral salt flow within the salt walls, which can be applied to the . . . . . . .
Rotevatn, 2013). These faults are likely still active in present time, due to local salt dissolution and ment structures (pre-salt), as well the proximity of salt structures and igneous intru- x4y |'| I y I ’ PP as well as the creation several small-scale inset maps hlghllghtlng fault zones studied in
sions. Green dashed polygon represents the approximate location for this research alt Va ey sa t wall.

subsequent collapse of the salt wall. modified from Lehmann, 2015). advanced analyses.
The initiation of supra-salt faulting of the Salt Valley likely began with the transgression of the Creta- The completion of kinematic analyses of digitally-collected outcropping faults.
ceous Interior Seaway, where marine waters interacted with the shallow body of Paradox Salt, References The interpretation for the nucleation, fault growth evolution, and mechanism of formation for

causing salt dissolution. The crestal subsidence of the salt wall from dissolution was magnified by i .
local depositional thickening of Cretaceous aged sediments, which can be seen in several seismic P BTy o e e e e T R SRy TR T the su pra-salt fault System, based on observations from both field and subsurface results.
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