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Abstract 

 

Seismic studies (COCORP, Deep Probe, and EarthScope BASE) have provided a better understanding of Laramide tectonism at 

deeper crustal levels. However, deformational mechanisms in the upper crust related to Laramide orogenisis remain unclear. 

Internal controls of Laramide tectonism in the upper crust have been proposed to be related to basement anisotropies, which may 

be linked to evolution of foreland arches at deeper crustal levels and structures seen at the surface. This study presents a 

structural and tectonic analysis of Precambrian anisotropies of the Wyoming craton and provides a hypothesis on the potential 

role of these features in Laramide orogenisis.  

 

Anisotropies are generally oriented in three directions: north-northwest, west-northwest, and northeast. They have a complex 

and long history of deformation since the Precambrian, most recently, during the Laramide. This work provides evidence for 

development of long-lived Neoarchean zones of convergence dominantly directed from the southwest towards the craton 

forming north-northwest weakness zones, as shown from modern analogs. In addition, northeast-southwest-directed pure-shear 

compressional forces from convergence are postulated to have formed west-northwest- and northeast-trending anisotropies in 

the form of conjugate shears, again supported by modern convergence zone deformations.  

 

It is proposed that these structures were reactivated throughout Laramide contraction, forming discrete zones of transpression 

that were displaced along a southwest- to northeast-directed Laramide deformational front. In the Wyoming transpressive zone, 
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west-northwest structures were displaced as reverse/left-lateral oblique-slip faults and, where connected, acted as lateral ramps 

facilitating major arch development along the north-northwest-trending structures. In the Montana transpressive zone, where 

north-northwest basement anisotropies are not present, reverse-sinistral slip occurred along west-northwest basement-seated 

faults without the associated vertical slip seen in Wyoming. Basement-seated faults are expressed at the surface as oblique, left-

slip reverse faults (west-northwest deformational zones in Wyoming/Montana), high-angle right-slip faults (northeast 

deformational zones in Wyoming/Montana), and low-angle reverse faults/thrust faults (north-northwest arches generally only in 

Wyoming) that are interconnected in a convergent deformation system that likely includes the Black Hills. This deformation 

system is postulated to be a fundamental tectonic feature controlling formation of Laramide arches/uplifts of the Wyoming 

craton. 
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Laramide structures of the Wyoming 
craton formed in the Precambrian 
under a convergent tectonic regime 
and these basement structures were 
simply reactivated under a similar PHS 
during Laramide orogenisis 
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What do we know? 
 Arch thrusts “appear” to sole out into mid-crustal transition zone 
 Arch thrusts are “connected” via oblique-slip (sinistral/reverse) faults acting as lateral 

ramps facilitating horizontal thrust movement 
 Possible relationship between upper mantle and basement anisotropies beneath 

arches/uplifts 
 For thrusts (= Archean magmatic arcs/subduction zones that have jumped and 

changed polarity through time; WRM/BHM) 
 For lateral ramps (= ?) 

 = synthetic conjugate shears connecting Archean magmatic arcs/subduction zones? 
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Summary 
 Precambrian basement anisotropies exist across the 

Wyoming craton (N-NW , W-NW, NE) 
 These anisotropies correspond well to surface 

structures 
 Evidence of left-shift on the W-NW faults is 

ubiquitous across the craton  
 In Wyoming, where W-NW faults “connect” with N-NW structures, 

these faults facilitate Laramide thrusting as sinistral, reverse-slip 
lateral ramps 

 In Montana, N-NW basement anisotropies are not present; therefore, 
deformation is confined to sinistral deformation zones 
(transpressional) 

 Basement anisotropies appear to be related to:  
 Convergent plate margins during the Archean   



Summary Con’t 
 Orientation of basement anisotropies were conducive to 

reactivation under NE-SW directed PHS during the 
Laramide 

 The orientation of these features  and deformation 
history create the “symmetry” observed across the 
Wyoming craton 

 Further studies on the left-shift zones need to be 
conducted to understand mid- to lower-crustal/upper 
mantle relationships = DRIVER 

 This cratonic model incorporates ideas from 
accepted/non-accepted models of Laramide orogenesis 
and requires minimal explanations for the various 
Laramide structures seen across the craton 

 = UNIFYING CONCEPT 
 



All Truth Passes Through Three Stages 
1. Ridicule 
2. Violently Opposed 
3. Accepted as being self-evident  
    Arthur Schopenhauer 
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