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Abstract

Seismic studies (COCORP, Deep Probe, and EarthScope BASE) have provided a better understanding of Laramide tectonism at
deeper crustal levels. However, deformational mechanisms in the upper crust related to Laramide orogenisis remain unclear.
Internal controls of Laramide tectonism in the upper crust have been proposed to be related to basement anisotropies, which may
be linked to evolution of foreland arches at deeper crustal levels and structures seen at the surface. This study presents a
structural and tectonic analysis of Precambrian anisotropies of the Wyoming craton and provides a hypothesis on the potential
role of these features in Laramide orogenisis.

Anisotropies are generally oriented in three directions: north-northwest, west-northwest, and northeast. They have a complex
and long history of deformation since the Precambrian, most recently, during the Laramide. This work provides evidence for
development of long-lived Neoarchean zones of convergence dominantly directed from the southwest towards the craton
forming north-northwest weakness zones, as shown from modern analogs. In addition, northeast-southwest-directed pure-shear
compressional forces from convergence are postulated to have formed west-northwest- and northeast-trending anisotropies in
the form of conjugate shears, again supported by modern convergence zone deformations.

It is proposed that these structures were reactivated throughout Laramide contraction, forming discrete zones of transpression
that were displaced along a southwest- to northeast-directed Laramide deformational front. In the Wyoming transpressive zone,
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west-northwest structures were displaced as reverse/left-lateral oblique-slip faults and, where connected, acted as lateral ramps
facilitating major arch development along the north-northwest-trending structures. In the Montana transpressive zone, where
north-northwest basement anisotropies are not present, reverse-sinistral slip occurred along west-northwest basement-seated
faults without the associated vertical slip seen in Wyoming. Basement-seated faults are expressed at the surface as oblique, left-
slip reverse faults (west-northwest deformational zones in Wyoming/Montana), high-angle right-slip faults (northeast
deformational zones in Wyoming/Montana), and low-angle reverse faults/thrust faults (north-northwest arches generally only in
Wyoming) that are interconnected in a convergent deformation system that likely includes the Black Hills. This deformation
system is postulated to be a fundamental tectonic feature controlling formation of Laramide arches/uplifts of the Wyoming
craton.
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Hypothesis:

Laramide structures of the Wyoming
craton formed in the Precambrian
under a convergent tectonic regime
and these basement structures were
simply reactivated under a similar PHS
during Laramide orogenisis
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What do we know?

* Arch thrusts into mid-crustal transition zone
* Arch thrusts are via oblique-slip (sinistral/reverse) faults acting as
facilitating horizontal thrust movement

» Possible
arches/uplifts

For thrusts ( /subduction zones that have jumped and
changed polarity through time; WRM/BHM)

For lateral ramps (= ?)

between upper mantle and basement anisotropies beneath

connecting Archean magmatic arcs/subduction zones?
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Summary

Precambrian basement anisotropies across the
Wyoming craton (N-NW , W-NW, NE)

These anisotropies to surface
structures

Evidence of on the W-NW faults is

across the craton

In , where W-NW faults with N-NW structures,
these faults facilitate Laramide thrusting as

In , N-N'W basement anisotropies are not present; therefore,
deformation is confined to
(transpressional)

Basement anisotropies appear to be related to:
during the



Summary Con't
Orientation of basement anisotropies were conducive to

during the
Laramide
The orientation of these features and deformation
history create the observed across the
Wyoming craton
Further studies on the need to be

conducted to understand mid- to lower-crustal/upper
mantle relationships

This cratonic model from
accepted/non-accepted models of Laramide orogenesis
and requires minimal explanations for the various
Laramide structures seen across the craton
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We are like a judge confronted by a
defendant who declines to answer,
and we must determine the truth
from the circumstantial evidence.
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